$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。
$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。
$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています.
$ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:
$ $ この時,良い数列は全部でいくつありますか?
非負整数を半角で解答してください.
下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。
半角数字で入力してください。
例)10
そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。
そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。
あかつきさんは毎秒Xm東に進みます。
そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。
Xはいくつですか?
Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。