数列{$a_{n}$}を次の条件により定める。
$$
a_{1}=a_{2}=1,
a_{n+2}-a_{n+1}+a_{n}=0
(n=1,2,3,...)$$
これについて、次の問いに答えよ。
$(1)$ $a_{3}$を求めよ。
$(2)$ $a_{2025}$を求めよ。
$(3)$ $\sum_{n=1}^{2025}\quad{a_{n}}$を求めよ。
答えのみを半角算用数字で答えてください
例えば(1)の答えが3、(2)の答えが100、(3)の答えが80のときは、
3,100,80
のように答えてください。
$AB \lt AC$ なる鋭角三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とし,頂点 $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とします.また,三角形 $ABC$ の外接円と三角形 $AEF$ の外接円の交点のうち $A$ でない方を $K$ とします.ここで,線分 $EF$ 上の点 $S$ を $\angle SHO = 90^{\circ}$ となるように取ると,四角形 $KSHD$ は凹四角形となりさらに以下が成り立ちました.
$$ KS : SH : HD = 21 : 9 : 8 \sqrt{5} , \quad DK = 20 $$ このとき,線分 $BC$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので, $a+b$ の値を解答してください.
正の整数を半角で解答.
半径1の円$\omega$に内接する凸六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$について,線分$A_{1}A_{4},A_{2}A_{5},A_{3}A_{6}$はそれぞれ$\omega$の直径です.直線$A_{1}A_{2}$と直線$A_{3}A_{4}$の交点を$B_{1}$直線$A_{3}A_{4}$と直線$A_{5}A_{6}$の交点を$B_{2}$直線$A_{5}A_{6}$と直線$A_{1}A_{2}$の交点を$B_{3}$とすると以下が成立しました.
$$
\frac {A_{1}A_{2}}{A_{1}A_{5}}+\frac {A_{2}A_{3}}{A_{2}A_{6}}+\frac {A_{3}A_{4}}{A_{3}A_{1}}=3,三角形B_{1}A_{2}A_{3},B_{2}A_{4}A_{5},B_{3}A_{6}A_{1}の面積の和は\frac {24}{5}.
$$
このとき,六角形$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$の面積は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.