$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?
すべての項が素数であるような数列 $a_1, a_2, …, a_N (a_1 \le a_2 \le … \le a_N)$ であり,$a_1^2+a_2^2+…+a_N^2=999$ を満たすもののうち,$N$ が最小のものすべてについて,$a_1+a_2+…+a_N$ の総和を解答せよ.
三角形 $ABC$ について,外接円と $\angle A$ の二等分線が再び交わる点を $M$,線分 $AM$ と $BC$ の交点を $D$,$\angle AMC$ の二等分線と線分 $BC,AC$ の交点をそれぞれ $E,F$ とすると,$DE=9, AF=16, AB=20$ が成立した.線分 $BC$ の長さを求めよ.
数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.
整数で解答してください.
正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。
整数で入力してください
整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$
を満たしている。
$${a_{2026}-a_{-2026}}$$
を求めよ。
整数で入力してください
$n,a$を自然数とする。$n!$の末尾の$0$の個数を$N(n)$,$n$を$a$進数で表した時の各桁の和を$S_{a}(n)$とする。(例えば$S_{10}(141)=6$)
このとき,$N(n)$を$S_{a}(n)$,$n$を用いて表せ。
半径 $r$ の円 $ \mathrm{O}\ $があり、この円の周上に定点 $ \mathrm{A}\ $ がある。点 $ \mathrm{A}\ $ における円 $ \mathrm{O}\ $の接線を $l$ とする。円 $ \mathrm{O}\ $ 上を動く点 $ \mathrm{P}\ $ に対し、点 $ \mathrm{P}\ $ から直線 $l$ に下ろした垂線の交点を $ \mathrm{H}\ $ とする。
(1) $\mathrm{AP}^{2}\ $を $r$ と $ \mathrm{AH}\ $ を用いて表せ。
(2) $k$ を定数とする。 このとき ${\mathrm{AP}^{2}=k\cdot \mathrm{AH}}$ が成り立つことを示せ。
(3)${\triangle \mathrm{APH}}$の面積を $ \mathrm{AH}\ $ を用いて表せ。また、点 $ \mathrm{P}\ $が円 $ \mathrm{O}\ $上を動くとき、${\triangle \mathrm{APH}}$ の面積が最大となる点 $ \mathrm{P}\ $の位置を求めよ。
座標平面上に2点$ \mathrm{A}(1,0)$, $\mathrm{B}(0,1)$ がある。$(0\le \theta \le \frac{\pi }{2}) $の範囲を動く点 $\mathrm{P}(\cos \theta ,\sin \theta ) $を考える。
(1) $\triangle \mathrm{ABP}$ の面積を $\theta $ を用いて表せ。
(2) $\triangle \mathrm{ABP}$ の面積の最大値を求めよ。
(3) $\triangle \mathrm{ABP}$ が直角三角形となるような $\theta $ の値をすべて求めよ。
(4) $\triangle \mathrm{ABP}$ の重心 $ \mathrm{G}$ の軌跡を求めよ。
二次方程式 $ax^{2}+bx+c=0$ を考える。ただし、(a,b,c) はすべて奇数である整数とする。このとき、この二次方程式の解が無理数であることを証明せよ。
数列 ${{a_{n}}}$は、${a_{1}=1}$ であり、すべての自然数 $n\ $に対して $${a_{n+1}=\frac{2a_{n}+3}{a_{n}+2}}$$を満たすものとする。
(1) ${{a_{n}}}$ の一般項を求めよ。
(2)すべての自然数 $n\ $に対して、${a_{n}<\sqrt{3}}$ であることを示せ。
(3) ${|a_{n}-\sqrt{3}|<\frac{1}{2^{n-1}}(\sqrt{3}-1)}$ が成り立つことを示せ。
$a,b$を正の実数とする。楕円 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\ $上の点 $\mathrm{P}(x_{0},y_{0})(x_{0}>0,y_{0}>0) $における接線を $l$とする。接線 $l$と $x$ 軸、および$y$軸で囲まれる三角形の面積を $S$ とする。
(1) 点 $\mathrm{P}$が楕円上を動くとき、面積 $S$ の最小値を $(a,b)$ を用いて表せ。
(2) 楕円の焦点の1つを $\mathrm{F}\ $とし、$\mathrm{F}\ $と接線 $l$との距離を $d$ とする。この時、$d$の最大値と最小値を $(a,b)$ を用いて表せ。
(3) 焦点 $F$ から接線 $l$ までの距離を$d_{1}$、もう1つの焦点 $F^{\prime }\ $から接線 $l$ までの距離を$d_{2}$とする。このとき、 $d_{1}d_{2}$ は常に一定であることを示せ。また、その値を$(a,b)$ を用いて表せ。
正の整数について定義され(正とは限らない)整数値を取る関数 $f$ であって,任意の正の整数 $m,n$ について
$$f(mn)=f(m)^2+f(m)f(n)-f(1)$$
を満たすものについて,$(f(1), f(2), …, f(100))$ としてありうる組はいくつ存在するか?
$3\times 1000$ の $2$ つのマス目 $A,B$ があり,これらの $6000$ マスのうち $0$ 個以上に印をつける.印の付け方であり,以下を満たす方法は $N$ 通り存在する.$N$ が $2$ で割り切れる回数を解答せよ.