平面上に、点 $A(0,0)$、点 $B(10,0)$、点 $C(4,8)$ がある。
点 $P(x,y)$ は次の条件を満たすものとし、解の一意性のため $y>5$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56
)
問題文を入力してください
例)ひらがなで入力してください。
平面上に、点 $A(0,0)$、点 $B(8,0)$、点 $C(2,6)$ がある。
点 $P(x,y)$ は次の条件を満たすものとし、解の一意性のため $y>0$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56
)
文
問題文を入力してください
例)ひらがなで入力してください。
タイトル:二条件で定まる点と魂比率
平面上に、点 $A(0,0)$、点 $B(6,0)$、点 $C(0,8)$ がある。
点 $P(x,y)$ は次の2条件を満たすものとし、ただし一意性のため $y>4$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56
)
$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.
カード $X$ は一番右のカードではない
カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい
$N$ を $997$ で割った余りを求めてください.
半角数字で解答してください.
以下の問いに答えよ.(自然数$n$について,$n!$ は,$1$ から $n$ までの自然数をすべてかけた値を表す.ただし$0!=1$とする.)
$r^m=\frac{r^m-r^{m+1}}{1-r}$ という式変形を用いて,$s<t$ を満たす自然数組 $(s,t)$ と, $r<1$ を満たす実数 $r$ について,$$r^s+r^{s+1}+\cdots+r^t=\frac{r^s-r^{t+1}}{1-r}$$ となることを示せ.
自然数組 $(a,i)$ について $a^i < i!$ が成立するなら,$i$ 以上の任意の自然数 $j$ で $$a^j < j!$$ となることを示せ.
自然数組 $(a,i,k,n)$ について,$f(k)=k!-a^k$ ,$g(k)=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{k!}$ とする.
$i<n$ ,$f(i)> 0$ を満たすとき,$$g(n)< g(i-1)+\frac{1}{a^i-a^{i-1}}-\frac{1}{a-1}\left( \frac{1}{a} \right)^n$$となることを示せ.
$n>4$ を満たす自然数 $n$ について,$$g(n)<\frac{67}{24}$$ となることを示せ.
私に伝わる程度でよいので、軽めに記述してください。
任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$
が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.
訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.
$\{1,2,…,9999\}$ の部分集合 $S$ であり,任意の $S$ の要素 $a,b(a\neq b)$ について $a+b$ を行ったときに繰り上がりが起きない(どの桁も $10$ を超えない)ようなものについて,その要素数の最大値を求めよ.
鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.