数学の問題一覧

カテゴリ
以上
以下

katsuo_temple

公開日時: 2025年9月7日23:04 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$において,$AB,BC$の中点をそれぞれ$M,N$とし,重心を$G$とします.三角形$AGM$の外接円と三角形$CGN$の外接円が再び交わる点を$P$とすると以下が成立しました.$$GP//BC AB=5 AC=4$$このとき線分$GP$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

例)ひらがなで入力してください。

unknown

公開日時: 2025年9月7日23:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

鋭角三角形$ABC$について, 外心を$O$, 垂心を$H$とする. $B$から$AC$に下した垂線の足を$D$とすると,
$$
AD=3 OH=OD BH:HC=7:18
$$
が成立した. このとき, 線分$BD$の長さの$2$乗は互いに素な正整数$a$,$b$を用いて$\frac{a}{b}$と表されるので, $a+b$を解答せよ.

Sry

公開日時: 2025年9月7日19:59 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

shippe

公開日時: 2025年9月7日0:07 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ

漸化式 合同式 数学

$$
M_{x}(y)をyをxで割った余りとします。
\\a_{n+1}=M_{p}(3a_{n} +\beta),a_{1}=aであり、
\\
\begin{equation}
\left\{
\begin{alignedat}{3}
n,a,\beta,p\in\mathbb{N}
\\n\geq1
\\1\leq \beta \leq p
\end{alignedat}
\right.
\end{equation}
である数列を考えたとき、\\
\\
a_{n}の取り得る値の種類をT_{p}として、T_{p}\ne pを示してください。
$$

解答形式

日本語で簡潔に入力してください。

shippe

公開日時: 2025年9月6日22:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

$$
p^{q+r} +q^{p+r} +r^{p+q}が素数となるような10以下の素数の組(p,q,r)の個数を求めよ。
$$

解答形式

半角数字で解答してください。覚悟して解いてください。

Sry

公開日時: 2025年9月6日14:32 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$

shippe

公開日時: 2025年9月5日23:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

kinonon

公開日時: 2025年9月3日21:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$

解答形式

自然数となるので、その値を入力してください

Angel_Chase

公開日時: 2025年9月3日17:58 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の等式を満たすような $10000$ 以下の正整数の組 $(a,b,c)$ の個数を求めて下さい.

$$160a^2+153b^2+25c^2=24ab+96bc+72ac$$

解答形式

半角数字で入力して下さい.

smasher

公開日時: 2025年9月3日11:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

udonoisi

公開日時: 2025年8月31日21:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

Ryomanic

公開日時: 2025年8月30日22:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。
$$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$
の時、四角形EIFI’の面積を求めよ。

解答形式

求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。