数学の問題一覧

カテゴリ
以上
以下

MrKOTAKE

公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

△ABCの内心をI,外心をOとする.
∠AIB=145°のとき∠AOBの角度を度数法で解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

△ABCの重心Gに関してAと対称な点をDとすると4点ABDCは共円であり,
AB=6, BD=4であった. このときADの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正三角形ABCとAP=2, BP=CP=3を満たす点Pがある.
ABの長さとしてあり得る値の総和の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

AB=15, AC=24の鋭角三角形ABCがあり内心をI, 垂心をHとすると
4点BCHIは同じ円Γ上にあった.このとき円Γの半径の長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

四面体ABCDは以下を満たす.
AB=AC=AD=13, BC=6, CD=8, BD=10
このとき四面体ABCDの体積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

seven_sevens

公開日時: 2024年8月4日22:20 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ


この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$2+2=?$$

seven_sevens

公開日時: 2024年8月4日22:00 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 採点者ジャッジ


この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$1+1=?$$

nflight11

公開日時: 2024年8月3日4:16 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

From-Korea

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

MrKOTAKE

公開日時: 2024年8月2日11:16 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

△ABCがあり,また点Cを通る点BでABに接する円Oがある.円O上でありかつ
△ABCの内部にBD=CDとなる点DをとりACと円Oの交点のうちCでないものをEとおくと
AB=15 BC=10 DE=16であった.このときACの長さの2乗は互いに素な正整数a,bによってa/bと表されるのでa+bの値を解答してください.
ただし点A,C,EはACEの順に一直線上に並んでいるものとする。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

noname

公開日時: 2024年8月1日21:32 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$n$を自然数とします。$n$個の複素数からなる組$z(n)=(z_1,z_2,z_3,……z_n)$について、$z(n)$の要素からの異なる$i$個の選び方全てについてそれら(選んだ$i$個の要素)の総積を求め、それら(全ての選び方)の総和を$S(z(n),i)$とします。ある組$z(2024)$が存在して$$S(z(2024),1)=S(z(2024),2)=S(z(2024),3)=……S(z(2024),2022)=0,S(z(2024),2024)=-2$$を満たすとき、$$(z_1)^{2024}+(z_2)^{2024}+(z_3)^{2024}+……+(z_{2024})^{2024}$$の値は実数になるのでそれを計算して答えてください。

解答形式

値を1行目に半角で入力してください。

iwashi

公開日時: 2024年7月31日22:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

実数$x$は以下の条件をすべて満たす。

  • $x$は有理数であり整数でない。
  • $x$は$10$より大きい。
  • $x$を既約分数で表したとき、分母は$20$であり分子は$17$の倍数である。
  • $x-10$の小数点第一位を四捨五入した値と$\sqrt{x}$の小数点第一位を四捨五入した値は等しい。

このような$x$全てについて、$20x$の総和を求めよ。

MrKOTAKE

公開日時: 2024年7月30日13:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

中心がOの円と線分ABの二つの交点のうちAから近い順にC,Dとすると
BO=11, CO=7, AC=CD=DB であった.
このとき△ABOの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.