【補助線主体の図形問題 #026】
今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。
${
\def\cm{\thinspace \mathrm{cm}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\renewcommand\deg{{}^{\circ}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #025】
このところ円がらみの出題が続いていたので、今回は直線図形だけで固めてみました。暗算でさくっと解いてしまってください!
${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。
$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。
【補助線主体の図形問題 #024】
今週も補助線主体の図形問題をお送りします。一瞬ギョッとするかもしれませんが、何かが連想できればいつも通り暗算で処理可能です。強引な処理方法もあります。あれこれ試行錯誤を楽しんでもらえれば幸いです。
${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #023】
今回は久しぶりに求角問題を用意しました。うまい補助線が引けるとスパッと解けるようになっています。補助線と共に楽しいひと時をお過ごしください。
${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
入力を一意に定めるための処置です。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。
半角数字で解答してください。
円の中の線分が図の条件を満たすとき、円の半径を求めてください。
半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。
文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。
【補助線主体の図形問題 #022】
まもなく迎える7月22日は、$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$ から「円周率近似値の日」とされています。今回は円周率近似値の日を少し先取りして円だけで構成された問題を用意しました。暗算解法もいつも通り用意しています。補助線と共にしばし図形問題をお楽しみください。
${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #021】
今回は久しぶりに面積関係の問題を用意してみました。複雑な計算は必要ありません。腕に覚えのある方はぜひ脳内だけでの処理に挑戦してみてください。
${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\def\paraeq{\mathrel{\style{transform:translateY(-0.4em)}{\scriptsize{/\!/}} \hspace{-0.7em}{\style{transform:translateY(0.1em)}{=}}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。