鋭角三角形 $ABC$ があり,$A,B$ から対辺におろした垂線の足をそれぞれ $D,E$ とし,線分 $DE$ 上に点 $P$ をとると,以下が成立しました.
$$AB=3,\quad AC=5,\quad \angle PAB=\angle PBC,\quad \angle PAC =\angle PCB $$
このとき線分 $AP$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください
鋭角三角形 $ABC$ があり,辺 $BC$ の中点を $M$ とし,線分 $AC$ 上に点 $D$ を,$\angle CBD=\angle CAM$ を満たすようにとると,
$$AD=1,\quad BD=6\sqrt{2},\quad DM=4\sqrt{2}$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AC$ を満たす鋭角三角形 $ABC$ があり,その外接円上に点 $D(\neq B)$ を,$AC\perp BD$ を満たすようにとると,
$$CD=3,\quad AD=7$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
正三角形 $ABC$ があり,その内部に点 $D$ をとると,
$$AD=33,\quad BD=4,\quad \angle ADB=120^\circ$$
が成立しました.線分 $CD$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形 $ABC$ があり,その内心を $I$ とし,内接円 $\omega$ と線分 $BC,CA,AB$ との接点をそれぞれ $D,E,F$ とします.直線 $BC,EF$ の交点を $P$ とし,$I$ から線分 $AP$ におろした垂線の足を $Q$,線分 $DQ$ と $\omega$ の交点のうち $D$ でないものを $R$ とすると,
$$RD=9,\quad RQ=6,\quad AF=10$$
が成立しました.このとき,線分 $PR$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください
鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形 $ABC$ があり,その外心を $O$ とします.直線 $AO,BC$ の交点を $D$,直線 $BO,AC$ の交点を $E$ とすると,
$$BD=6,\quad CD=3,\quad CE:EA=3:4$$
が成立しました.このとき,線分 $AC$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AC$ の鋭角二等辺三角形がありその垂心を $H$ とします.線分 $BC$ 上に点 $D$ をとり,点 $P,Q$ を $APQD$ がこの順に一直線上に並ぶようにとると $4$ 点$ACHP$,$4$ 点 $ABHQ$ はそれぞれ共円であり,
$$BD=15,\quad CD=25,\quad PQ=8$$
が成立しました.このとき, $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB<AC$ なる鋭角三角形 $ABC$ について垂心を $H$ とし,三角形 $ABC$ の外接円と直線 $BH$ ,直線 $CH$ の交点をそれぞれ $(D\neq B),E(\neq C)$ とする.半直線 $DE$ と直線$BC$の交点を$P$とすると,三角形 $AEH$ の外接円は直線 $HP$ に点 $H$ で接し, $PH=3,AE=4$ であった.このとき線分 $AB$ の長さの $2$ 乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE
$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap
三角形 $ABC$ があり, $ \angle ACB$ の二等分線と $AB$ の交点を $D$ とし,線分 $BC$ 上に点 $P$ ,線分 $AC$ 上に点 $Q$ をとると相異なる $4$ 点 $A,C,D,P$と$B,C,D,Q$ はそれぞれ共円であり $CP=3,CQ=4,AB=15$ が成立した.このとき三角形 $ABC$ の面積の $2$ 乗を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE
$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap
三角形 $ABC$ の内部に点 $D$ をとると $DB=DC,AC=AD, \angle DBC=19^{\circ}, \angle ABD=30^{\circ} $ が成立したので $\angle BAC$ の大きさを度数法で解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap
鋭角三角形 $ABC$ があり, $B$ から $AC$ への垂線の足を $D$ とし,重心を $G$ ,垂心を $H$ とする.このとき $4$ 点 $B,C,G,H$ は共円であり$AD=3,CD=5$であったので, $AB$ の長さの $2$ 乗を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE
$AB<BC$なる鋭角三角形$ABC$があり,$B$から$AC$におろした垂線の足を$D$とし,線分$BC$の中点を$M$とする.三角形$ABC$の外接円上に点$E,F$をとると$4$点$EDMF$はこの順に同一直線上に存在し,$DE=6,MF=8,CD=15$であったので線分$AB$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.