MrKOTAKE

MrKOTAKE

Twitter ID: @mr_kotake
OMC水
OMC水

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
4日前

4

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(C)

MrKOTAKE 自動ジャッジ 難易度:
14日前

38

問題文

正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(F)

MrKOTAKE 自動ジャッジ 難易度:
14日前

33

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(I)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

$AD<BC$の等脚台形$ABCD$があり線分$AB$上に$∠ADP=∠BCP$となる点$P$をとると
$AP=6,BP=9,AD=16$であったので
等脚台形$ABCD$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(L)

MrKOTAKE 自動ジャッジ 難易度:
14日前

32

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$,垂心を$H$とすると
$AM=20,BC=16,MH=4$であったので$AH$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(B)

MrKOTAKE 自動ジャッジ 難易度:
14日前

35

問題文

$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(J)

MrKOTAKE 自動ジャッジ 難易度:
14日前

20

問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。

KOTAKE杯003(E)

MrKOTAKE 自動ジャッジ 難易度:
14日前

39

問題文

鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(G)

MrKOTAKE 自動ジャッジ 難易度:
14日前

37

問題文

三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(H)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(A)

MrKOTAKE 自動ジャッジ 難易度:
14日前

64

問題文

鋭角三角形$ABC$があり$∠A$内の傍心を$P$とすると$∠APB=23°$であったので,
$∠BAC$の大きさを度数法で表したときにあり得る最小の整数値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(K)

MrKOTAKE 自動ジャッジ 難易度:
14日前

19

問題文

$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(D)

MrKOTAKE 自動ジャッジ 難易度:
14日前

39

問題文

三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001没問②

MrKOTAKE 自動ジャッジ 難易度:
4月前

3

問題文

三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001没問①

MrKOTAKE 自動ジャッジ 難易度:
4月前

2

問題文

三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(J)

MrKOTAKE 自動ジャッジ 難易度:
5月前

36

問題文

三角形$ABC$の内心を$I$,$∠A$内の傍心を$J$とすると以下が成立した.
$BI=7,CI=15,IJ=25$
このとき$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(Q)

MrKOTAKE 自動ジャッジ 難易度:
5月前

22

問題文

$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(I)

MrKOTAKE 自動ジャッジ 難易度:
5月前

43

問題文

凸四角形$ABCD$は内接円と外接円を持ち,$AB=5,DC=3,AB//DC$であった.
$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.