$a\lt c$ なる実数 $a, b, c$ が $$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$ をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.
半角数字で解答してください.
$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします. $$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$ このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.