1枚の硬貨を8回投げる。硬貨を1枚投げ, 表が出る確率, 裏が出る確率はともに$\frac{1}{2} $である。このとき、$k$回目(1$≦$$k$$≦$8)に表が出たら$X_{k}$=1, 裏が出たら$X_{k}$=0として, $X_{1}$, $X_{2}$,・・・, $X_{8}$を定める。
$$\sum_{k=1}^{6}X_{k} X_{k+1} X_{k+2}=0$$となる確率を求めよ。
互いに素な自然数$a,b$を用いて, 求める確率は$\frac{a}{b} $と表されるので、$a+b$の値を入力してください。