nanohana

nanohana

数列と不等式

nanohana 自動ジャッジ 難易度:
2月前

2

問題文

$$
数列{a_{n}}は整数で、次の(Ⅰ) (Ⅱ)を満たす
$$$$
(Ⅰ)a_{1}= a_{2025}=0
$$$$
(Ⅱ)a_{n} a_{n+2} +2{a_{n+1}}^2≦ a_{n} a_{n+1}+ a_{n+1} a_{n+2}
$$$$
このとき、a_{2024}の値を求めよ。
$$

解答形式

$$a_{2024}の値を半角数字で入力してください。$$

積分方程式

nanohana 自動ジャッジ 難易度:
2月前

3

問題文

f(x)は連続で微分可能である。
次の式を満たすf(x)を求めよ。$$f(x)=2f(-x)+ \int_{0}^{x^{2}}f'(\sqrt{t})dt$$

解答形式

f(2024)の値を半角数字で入力してください。

階乗の和

nanohana 自動ジャッジ 難易度:
3月前

11

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

漸化式と極限

nanohana 自動ジャッジ 難易度:
4月前

3

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

Water in cups

nanohana 自動ジャッジ 難易度:
4月前

0

問題文

容積が200ccのコップAとBとCがある。最初コップAとBとCには200ccの水が入っている。

6面サイコロを投げ、1が出ればAの水100ccをBに注ぎ、2が出ればBの水100ccをAに注ぎ、3が出ればBの水100ccをCに注ぎ、4が出ればCの水100ccをBに注ぎ、5が出ればCの水100ccをAに注ぎ、6が出ればAの水100ccをCに注ぐ。どの目が出るかは同様に確からしい。

ただし、コップには200ccを超える量の水は入らず、200ccを超えて注いだ水はすべてあふれ、捨てるものとする。

この操作を繰り返し続け,一方のコップが空になったときに操作を終える。10回目に操作を終える確率を求めよ。

解答方式

求める確率は互いに素な二つの正整数 a,bを用いてa/bと表すことができるため、a+bを解答してください.

fifty chairs

nanohana 自動ジャッジ 難易度:
4月前

0

問題文

15個の椅子が左右1列に並んでいて、最初は椅子に誰も座っていない。これから15人の人が1人ずつ訪れ、以下の行動を行う。

まだ人が座っておらず、人が座っている椅子と1つ以上離れている椅子から1つ無作為に選びそこに座る。座れる椅子がなければ、座らずに立ち去る。

15人全員の行動が終了した時の椅子の埋まり方の数を求めよ。ただし、誰が椅子に座っているかは区別しない。

解答形式

半角数字で入力してください。

6月前

13

問題文

実数a,b,c,d,e,fが次の不等式を満たしている。
$$
a^2+b^2+c^2≦1
$$$$
b^2+c^2+d^2≦1
$$$$
c^2+d^2+e^2≦1
$$$$
d^2+e^2+f^2≦1
$$このとき$$a+b+c+d+e+f$$の最大値を求めよ。

解答形式

a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。

6月前

2

問題文

三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。

解答形式

存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)

いい数

nanohana 採点者ジャッジ 難易度:
6月前

5

問題文

$$p、p^2、p^3、p^4$$が10進数表記ですべていい数字となる自然数pは存在するか。
ただし、いい数字とはどの桁も素数であるような自然数のことである。例えば、252、7352のような自然数のことである。

解答形式

存在するならばそのような自然数pを入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです。)

内積の取りうる値

nanohana 自動ジャッジ 難易度:
7月前

0

問題文

一辺の長さが1の正三角形ABCの内部及び周上を点Pが動く。内積(→AP)・(→BP)の取りうる値の範囲を求めよ。

解答形式

解答は(ア)≦ (→AP)・(→BP)≦(イ)となるので、(ア) (イ)に当てはまる数字を改行して入力してください。ただし、近似値√2=1.4、√3=1.7、√5=2.2、√7=2.6として入力してください。また、解が整数出ない場合は分数で解答してください。

(例)
(ア) =-√2、(イ)=4/7のときは
-7/5
4/7
と入力してください。

対称式の総和②

nanohana 自動ジャッジ 難易度:
7月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。


問題文

正四面体ABCDを考える。正四面体の全ての面に接する内接球の中心を点O、∠AOB=θと定める。

θと108°のうちどちらの方が大きいか。

解答形式

θの方が大きい場合はA、108°の方が大きい場合はB、θ=108°の場合はCと半角入力してください。

8月前

23

問題文

$$\sum_{k=m}^{n}k!=p$$を満たす自然数m,nと素数pの組(m,n,p)を全て求めよ。

解答形式

mが小さい順に、そして組ごとに改行して解答してください。

例えば(m,n,p)=(1,2,3)(2,3,4)(3,4,5)のときは、
1,2,3
2,3,4
3,4,5
のように入力してください

8月前

9

問題文

$$
x+ \frac{1}{x} =-1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。