$$
F(t) = \int_{0}^{1} \frac{\left|\sin tx\cos tx \right|}{\left(1+\sin ^{2}tx \right)\left(1+\cos ^{2}tx \right)\left(1+\tan ^{2}tx \right)}dx
$$とする。極限値$\displaystyle \lim_{t\to\infty} e^{n\pi F(t)}$が整数になるような正整数$n$のうち最小のものを求めよ。また、そのときの極限値を求めよ。
1行目に$n$の値を、2行目に極限値を半角英数字で解答してください。
表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。
$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。
$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。
1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合
123
456
としてください。