Kta

Kta

Twitter ID: @Kta_math
京大作サー/OMC青
京大作サー/OMC青

京大作サーマスガチャ2025 - LR4

Kta 自動ジャッジ 難易度:
13日前

5

問題文

三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.

解答形式

半角数字で入力してください。

京大作サーマスガチャ2025 - R18改

Kta 自動ジャッジ 難易度:
13日前

5

問題文

三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.

解答形式

半角数字で入力してください。

京大作サーマスガチャ2025 - SR18

Kta 自動ジャッジ 難易度:
13日前

2

問題文

任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.

解答形式

半角数字で入力してください。

京大作サーマスガチャ2025 - SR22

Kta 自動ジャッジ 難易度:
14日前

14

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

OMC没問2

Kta 自動ジャッジ 難易度:
9月前

4

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

OMC没問1

Kta 自動ジャッジ 難易度:
9月前

3

問題文

$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で入力してください。

2023文化祭2.4

Kta 自動ジャッジ 難易度:
9月前

0

問題文

$AB<AC$ の鋭角三角形 $ABC$ について,$\angle{BAC}$ の二等分線と線分 $BC$ との交点を $D$ とし,点 $D$ から線分 $AB,AC$ に下ろした垂線の足をそれぞれ $F,E$ としたとき,以下が成立しました.$$AE=4,CE=2,CD=2\sqrt{2}$$三角形 $ABC,AEF$ の外接円をそれぞれ $\omega_1,\omega_2$ ,その中心をそれぞれ $O_1,O_2$ とし,$\omega_1$ と $\omega_2$ との交点のうち $A$ でない方を $P$ ,直線 $PO_2$ と直線 $DO_1$ との交点を $Q$ としたとき,線分 $PQ$ の長さは互いに素な正整数 $a,c$ と平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

2023文化祭2.3.3

Kta 自動ジャッジ 難易度:
9月前

0

問題文

$AB<AC$ を満たす三角形 $ABC$ について,その内心を $I$ ,外心を $O$ ,垂心を $H$ ,内接円の半径を $r$ ,外接円の半径を $R$ としたとき,以下が成立しました.$$r=6,R=13,BC=24$$直線 $AI$ と直線 $HO$ との交点を $D$ としたとき,線分 $OD$ の長さは互いに素な正整数 $a,c$ と平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

例)半角数字で入力してください。

2023文化祭2.3.2

Kta 自動ジャッジ 難易度:
9月前

0

問題文

$AB<AC$ を満たす三角形 $ABC$ について,その内心を $I$ ,外心を $O$ ,垂心を $H$ ,内接円の半径を $r$ ,外接円の半径を $R$ としたとき,以下が成立しました.$$\angle{BAC}=60^\circ,r=4,R=10$$このとき,三角形 $HIO$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

2023文化祭2.3.1

Kta 自動ジャッジ 難易度:
9月前

0

問題文

$AB<AC$ を満たす三角形 $ABC$ について,その内心を $I$ ,外心を $O$ ,垂心を $H$ ,内接円の半径を $r$ ,外接円の半径を $R$ としたとき,以下が成立しました.$$\angle{AIO}=90^\circ,r=7,R=15$$このとき,四角形 $OIBC$ の面積は最大公約数が $1$ である正整数 $a,c,e$ と平方因子を持たない正整数 $b,d$ を用いて $\displaystyle\frac{a\sqrt{b}+c\sqrt{d}}{e}$ と表せるので,$a+b+c+d+e$ を解答してください.

解答形式

半角数字で入力してください。

2023文化祭2.2

Kta 自動ジャッジ 難易度:
9月前

1

問題文

中心を $O_1,O_2$ とする $2$ 円 $\omega_1,\omega_2$ が $2$ 点 $A,B$ で交わっています.半直線 $O_1A$ と $\omega_2$ が点 $A$ 以外の点で交わったのでその交点を $C$ とし,半直線 $O_2A$ と $\omega_1$ が点 $A$ 以外の点で交わったのでその交点を $D$ とすると,以下が成立しました.$$O_1A=3,O_2A=AB=2$$このとき,$CD$ の長さは最大公約数が $1$ である正整数 $a,c,e$ と平方因子を持たない正整数
$b,d$ を用いて $\displaystyle\frac{a\sqrt{b}+c\sqrt{d}}{e}$ と表せるので,$abcde$ を解答してください.

解答形式

例)半角数字で入力してください。

2023文化祭2.1

Kta 自動ジャッジ 難易度:
9月前

1

問題文

四角形 $ABCD$ があり,半直線 $BA,CD$ が点 $E$ ,半直線 $AD,BC$ が点 $F$ ,半直線 $CA,FE$ が点 $G$ でそれぞれ交わっています.線分 $BE$ を $BE:AB$ に外分する点を $H$ としたとき、以下が成立しました.$$GB\parallel EC,BE\cdot BF=90,AB\cdot BC\cdot CF\cdot AE=320$$このとき,四角形 $BGHF$ の面積は三角形 $ABC$ の面積の $\displaystyle\frac{a}{b}$ 倍( $a,b$ は互いに素な正整数)となるので,$a+b$ を解答してください.

解答形式

例)半角数字で入力してください。

2022文化祭

Kta 自動ジャッジ 難易度:
11月前

3

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

2023文化祭1

Kta 自動ジャッジ 難易度:
11月前

13

問題文

$p^2-pq-q^2+p+q=0$ を満たす素数の組 $(p,q)$ すべてについて,$p+q$ の総和を求めてください.

解答形式

半角数字で入力してください。