12色で,正八面体の各頂点を全ての頂点が異なる色になるように塗るとき,色の塗り方は何通りあるか求めよ.ただし,回転して一致するものは同じものと数える.
$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.
長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\ $\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.
10進数における$10!$を$n$進数に変換したときの末尾につく0の数を $f(n)$ とする.このとき,$\sum\limits_{n=2}^\infty f(n)$を求めよ.
1辺4の正三角形の内部に点$P$をとる. 点$P$の各辺からの距離をそれぞれ$a, b, c$と置いたとき, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11\sqrt{3}}{6}, \frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}=\frac{\sqrt{3}}{2}$が成り立ったから$a^2+b^2+c^2$ の値を求めよ.ただし,答えは互いに素な自然数$a, b$を用いて$\frac{a}{b}$と表されるので,$a+b$の値を答えよ.
$a$を$b$で割った余りを$f(a, b)$とする. このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.
$xy$平面における最高次係数が1である4次関数$f(x)$に対して,$y=x^2$が2点(10,$f(10)$),(16,$f(16)$)で接しているとき,$f(x)$を求めよ.ただし,$f(x)$は整数$a, b, c, d$を用いて$x^4+ax^3+bx^2+cx+d$と表されるため,$\mid a\mid+\mid b\mid+\mid c\mid+\mid d\mid$を答えよ.
$H$高校には一郎,二郎,三郎,...,$n$郎の$n$人の生徒が在籍している.この$n$人が英語と数学の試験を受けたとき,英語の分散が2,数学の分散が8,英語と数学の相関係数が0.5であった. $1 \leq k \leq n$を満たす自然数$k$について,$\vec{a}$の第$k$成分は$k$郎の英語の平均値との偏差,$\vec{b}$の第$k$成分は$k$郎の数学の平均値との偏差となるように$\vec{a}, \vec{b}$を定義する. このとき,$\vec{a}$と$\vec{b}$の内積$\vec{a}\cdot\vec{b}$を求めよ.