数列 {${a_n}$} を以下のように定義する。
$$ a_{n+3} = a_{n+2}+ a_{n+1} - a_n,\quad a_1 = \alpha,\ a_2 = \beta, a_3 = \gamma $$
ただし、$\alpha,\ \beta,\ \gamma\ $は実数である。
入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。
解説は正解者のみに公開される設定になっています。ヒントもほとんど解説みたいなものなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。(勿論、解答の再投稿も歓迎します。)
本問の場合、ヒント1~3が1.の、4~6が2.のヒントになっています。
問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。
例えば、以下のような観点でコメントしてくれると嬉しいです。
(もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)
$$ I_n=\int_{1}^{n}\log x dx $$
とする。ただし$n$は非負の整数。以下の設問に答えよ。ただし、必要ならば以下の式を用いてよい。
$$ e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$$
入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。
解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。
問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。
例えば、以下のような観点でコメントしてくれると嬉しいです。
(もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)
(かつて別のサイトに乗せたことがある問題です。)
$xy$平面で楕円について考察したい。以下の設問に答えよ。ただし、$a>c\geq0$とする。
①:長半径が$a$、焦点が$(0,0)$と$(-2c,0)$である楕円の方程式を定義から導け。(15点)
ここで、以下の様に$r,\theta$を導入する。
$$r=\sqrt{x^2+y^2},\ \cos\theta = \frac{x}{r},\ \sin\theta = \frac{y}{r}$$
また、$q$を以下の様に定義する。
$$q = \frac{c}{a}$$
このとき、①の楕円において次が成り立つ。
$$r=\frac{a(1-q^2)}{1+q \cos\theta} \tag{i}$$
②: $\ (\mathrm{i})\ $を示せ。(15点)
③: ①の楕円を原点周りに30°回転させた図形を$C$とする。また、$C$と$x$軸の交点をそれぞれ$A、B$とし、線分$AB$の長さを$L(q)$とする。$a$を定数として、$L(q)$の最大値及びそのときの$q$を求めよ。さらに、$L(q)$が最大になるとき、$C$はどのような図形か、その特徴を述べよ。(20点)
入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。
問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。
例えば、この設問が完答できる生徒のレベル感などを予想してもらえると助かります。