tomorunn

tomorunn

統計情報

フォロー数7
フォロワー数7
投稿した問題数11
コンテスト開催数1
コンテスト参加数0
解答された数153
いいねされた数6
解答した問題数151
正解した問題数74
正解率49.0%

人気問題

問題8

tomorunn 自動ジャッジ 難易度:
23日前

26

問題文

数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす.
$a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.

解答形式

半角数字で入力してください。

自作問題

tomorunn 自動ジャッジ 難易度:
5月前

23

問題文

(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。
例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。
次の条件を満たす色付き整数の個数を求めよ。
・各桁の数の総和が10である。
・どの桁にも0は使われていない。

解答形式

半角整数で入力してください。

問題7

tomorunn 自動ジャッジ 難易度:
23日前

19

問題文

1辺が10の正三角形ABCがある.
線分AB上に $AD=3$を満たす点D, 線分BC上に $BE=3$を満たす点Eがある.
線分DEの垂直二等分線と直線ACの交点を $F$とし, 三角形ABCの外接円と交わる点のうち, 直線ABに関して $C$ と反対側にある点を $K$ とする.
直線EFと直線CKの交点を $L$とするとき, $EL$の長さを求めよ. なお, 答えは $\sqrt{a}-b$で表されるため, $a+b$を求めよ.

解答形式

半角数字で入力してください。

問題6

tomorunn 自動ジャッジ 難易度:
23日前

18

問題文

3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする.
全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。

解答形式

半角数字で入力してください。

問題4

tomorunn 自動ジャッジ 難易度:
23日前

13

問題文

以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ.
・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である.
・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす.
・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.

解答形式

半角数字で入力してください。

問題2

tomorunn 自動ジャッジ 難易度:
23日前

11

問題文

格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む.
このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.

解答形式

例)半角数字で入力してください。

新着問題

問題5

tomorunn 自動ジャッジ 難易度:
23日前

8

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。

問題8

tomorunn 自動ジャッジ 難易度:
23日前

26

問題文

数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす.
$a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.

解答形式

半角数字で入力してください。

問題4

tomorunn 自動ジャッジ 難易度:
23日前

13

問題文

以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ.
・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である.
・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす.
・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.

解答形式

半角数字で入力してください。

問題6

tomorunn 自動ジャッジ 難易度:
23日前

18

問題文

3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする.
全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。

解答形式

半角数字で入力してください。

問題2

tomorunn 自動ジャッジ 難易度:
23日前

11

問題文

格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む.
このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.

解答形式

例)半角数字で入力してください。

問題7

tomorunn 自動ジャッジ 難易度:
23日前

19

問題文

1辺が10の正三角形ABCがある.
線分AB上に $AD=3$を満たす点D, 線分BC上に $BE=3$を満たす点Eがある.
線分DEの垂直二等分線と直線ACの交点を $F$とし, 三角形ABCの外接円と交わる点のうち, 直線ABに関して $C$ と反対側にある点を $K$ とする.
直線EFと直線CKの交点を $L$とするとき, $EL$の長さを求めよ. なお, 答えは $\sqrt{a}-b$で表されるため, $a+b$を求めよ.

解答形式

半角数字で入力してください。

開催したコンテスト

コンテスト名 日程 作成者
某校数研からの挑戦状! 2025-09-13 18:00
〜 2025-09-14 15:00
tomorunn tomorunn

参加したコンテスト

まだ参加したコンテストがありません