$$問 題$$ $実数全体で定義され、実数値を取る定数でない関数f(x)がある。$ $この関数が任意の実数x,yに対して恒等式$ $$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$ $を満たすとき、定数kの値を求めよ。$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$ $この関数が任意の実数x,yについて恒等式$ $$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$ $を満たすとき、定数kの値を求めよ。$
次の式を満たす相異なる正の整数$p,q$を全て求めよ。
$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$
$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。