piroshiki

piroshiki

Twitter ID: @peng_quiz
9月くらいにコンテストしたいです
9月くらいにコンテストしたいです

統計情報

フォロー数5
フォロワー数4
投稿した問題数2
コンテスト開催数1
コンテスト参加数0
解答された数9
いいねされた数1
解答した問題数47
正解した問題数15
正解率31.9%

人気問題

sEigEn sign

piroshiki 自動ジャッジ 難易度:
20日前

9

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

反射2

piroshiki 自動ジャッジ 難易度:
20日前

0

問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

新着問題

反射2

piroshiki 自動ジャッジ 難易度:
20日前

0

問題文

一辺が$1$の正方形$ABCD$の頂点$A$から、動点$P$を$0 \leqq \angle\mathrm{DAE} \leqq π/2$となる辺$BC,CD$上の点$E$へ向かって直進させることを考える。いずれかの辺に触れたときは入射角と反射角が等しくなるように反射させ、頂点に触れたときは入射角を$π/2$として考える。
このとき点$P$が$2$進んだ後の点の軌跡で囲まれた領域の面積$S$を求めよ。

解答形式

$S$は$a/b$の形で表されるため、$b$を有理化した既約分数で回答すること。
$a=2√2-1,b=√2$の場合は、「$4-√2/2$」と回答する。

sEigEn sign

piroshiki 自動ジャッジ 難易度:
20日前

9

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

開催したコンテスト

コンテスト名 日程 作成者
14cup
piroshiki piroshiki sembri sembri

参加したコンテスト

まだ参加したコンテストがありません