問題文
(1) 自然数 $n$ について、$\cos\theta = x$ とおくと $\cos n\theta$ が $x$ の多項式で表せ、またその係数はすべて整数となることを示せ。
(2) $\cos 36^\circ,\ \cos 72^\circ$ を求めよ。
(3) 自然数 $n$ について、$n$ が 5 の倍数でないとき、$\cos(n^\circ)$ は無理数であることを示せ。
(4) $n$ 次の多項式
$$
A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0 = 0
$$
について、これが有理数解をもつならば、その解は
$$
\frac{\text{定数項 } A_0 \text{ の約数}}{\text{最高次の係数 } A_n \text{ の約数}}
$$
の形で表されることを示せ。
(5) $0<n<90$ を満たす自然数 $n$ について、$\cos(n^\circ)$ が有理数となる $n$ はいくつ存在するか。