Kobutya

Kobutya

統計情報

フォロー数0
フォロワー数0
投稿した問題数1
コンテスト開催数0
コンテスト参加数0
解答された数0
いいねされた数0
解答した問題数0
正解した問題数0
正解率--

人気問題

1日前

0

問題文


(1) 自然数 $n$ について、$\cos\theta = x$ とおくと $\cos n\theta$ が $x$ の多項式で表せ、またその係数はすべて整数となることを示せ。

(2) $\cos 36^\circ,\ \cos 72^\circ$ を求めよ。

(3) 自然数 $n$ について、$n$ が 5 の倍数でないとき、$\cos(n^\circ)$ は無理数であることを示せ。

(4) $n$ 次の多項式

$$
A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0 = 0
$$

について、これが有理数解をもつならば、その解は

$$
\frac{\text{定数項 } A_0 \text{ の約数}}{\text{最高次の係数 } A_n \text{ の約数}}
$$

の形で表されることを示せ。

(5) $0<n<90$ を満たす自然数 $n$ について、$\cos(n^\circ)$ が有理数となる $n$ はいくつ存在するか。


新着問題

1日前

0

問題文


(1) 自然数 $n$ について、$\cos\theta = x$ とおくと $\cos n\theta$ が $x$ の多項式で表せ、またその係数はすべて整数となることを示せ。

(2) $\cos 36^\circ,\ \cos 72^\circ$ を求めよ。

(3) 自然数 $n$ について、$n$ が 5 の倍数でないとき、$\cos(n^\circ)$ は無理数であることを示せ。

(4) $n$ 次の多項式

$$
A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0 = 0
$$

について、これが有理数解をもつならば、その解は

$$
\frac{\text{定数項 } A_0 \text{ の約数}}{\text{最高次の係数 } A_n \text{ の約数}}
$$

の形で表されることを示せ。

(5) $0<n<90$ を満たす自然数 $n$ について、$\cos(n^\circ)$ が有理数となる $n$ はいくつ存在するか。


開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません