問題$O$ を原点とする座標空間において,不等式
$$
x^2 + y^2 > 1,\quad z \ge 0
$$
の表す領域を $E$ とする.
また,$1$ 辺の長さが $3$ である立方体(内部を含む)を $S$ とする.
立方体 $S$ が次の(*)を満たしながら自由に動くとき,立方体 $S$ の通りうる範囲のうち
$z \ge 0$ の部分 $V$ の体積を求めよ.
(*)立方体 $S$ と領域 $E$ が共有点を持たない.
1つの項にして解答
・分数を含む場合
分子/分母 のように解答
※分母に根号を含まない形にすること。
・根号を含む場合
記号「√」を用い、「+」,「-」を含むとき根号の中身全体を()でくくる
例 √(2+3√2)
・分子、分母が多項式で表される場合
該当する多項式全体を()でくくる
例 (2+3√2)/2
・πを含む場合
例 √2π 「()」は不要
特に分子にπがあるとき「記号/」の直前にπを記入
例 3√2π/5、(2+3√2)π/2
左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。
最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。
(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。
$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。
半角数字・記号で解答。
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。
左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。
最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。
(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。
$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。
半角数字・記号で解答。
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。
$r$ を正の実数とし,自然数 $n$ に対して,整式 $f_n(x)$ を
$$
f_n(x)=\sum_{k=1}^{n}\frac{x^{k}}{r^{k}}
$$
とする。また,整式 $f_n(x)$ を整式 $x^{2}-x-1$ で割った余りを $a_n x + b_n$ とする。
$(1)$ 数列 {${a_n}$},{${b_n}$}の一般項をそれぞれ求めよ。
$(2)$ 数列 {${a_n}$},{${b_n}$} がいずれも $0$ でない実数に収束するために正の実数 $r$ が満たすべき条件を求めよ。
また,そのときの極限値をそれぞれ $r$ を用いて表せ。
特に指定しません。
$O$ を原点とする座標空間において,点 $(0,0,1)$ を中心とする半径 $1$ の球面を $S$ とする。
$S$ 上の $x>0,\ y>0,\ z>1$ を満たす部分に点 $P$ をとり,$P$ において球面 $S$ と接する平面を $L$ とする。
また,平面 $L,\ xy$ 平面,$yz$ 平面,$zx$ 平面によって囲まれる部分を $D$ とする。
$D$ の全ての面に内接する球の半径を $r$ として,$r$ のとりうる値の範囲を求めよ。
$r$ はrで表す。根号は「√」を用いる。その他記号は全て半角で入力。
(例) √3<r<5 √3<=r<=5