Auro

Auro

統計情報

フォロー数0
フォロワー数2
投稿した問題数25
コンテスト開催数0
コンテスト参加数0
解答された数2
いいねされた数3
解答した問題数20
正解した問題数12
正解率60.0%

人気問題

階乗を含む整数問題

Auro 自動ジャッジ 難易度:
2月前

1

問題文

$n, k$ を正の整数とし,

$$
A_n = n! + k^2 + 2k + 2
$$

とする。$1 \le k \le 100$ の範囲で,次の (*) を満たす $k$ を全て求めよ。

(*) $A_n$ が平方数となる $n$ が少なくとも$1$つ存在する。

解答形式

$k$の値を半角数字で、小さい順に$1$行目から各行左詰めで入力してください。
例)
1
3
5

期待値

Auro 自動ジャッジ 難易度:
2月前

1

問題文

面積 $1$ の正六角形 $H$ がある。次の操作 (*) を $1$ 回行うとき,得られる $D$ の面積の期待値を求めよ。

(*) $H$ の $6$ つの辺から無作為に $3$ つの異なる辺を選び,それぞれの辺上に点をとる。この $3$ 点がそれぞれの辺上(頂点を含まない)を動くとき,この $3$ 点を頂点とする三角形の重心の動きうる範囲を $D$ とする。

解答形式

・数字や記号「+」「-」は半角で入力。
・小数表記は不可。分数を含む場合、分子/分母 のように入力。例)1/3
・根号を含む場合、√3のように入力。

複素数平面 通過範囲

Auro 採点者ジャッジ 難易度:
2月前

0

問題文

$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して

$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$

とおく。$\alpha, \beta$ は

$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$

を満たしながら動く。ただし,$i$ は虚数単位である。

(1) $f(1+i)$ がとりうる範囲を求め,複素数平面上に図示せよ。

(2) $\lvert f(1+i)\rvert$ の最大値を求めよ。

(3) $P(\alpha), Q(\beta)$ とおく。$f(1+i)$ が実数,かつ $f(1), f(i)$ がともに $-2$ 以上 $2$ 以下の実数であるとき,線分 $PQ$(端点を含む)が通りうる範囲を複素数平面上に図示せよ。

解答形式

⑴、⑶については、どんな図形になるかを解答すれば可とします。
例)原点を中心とする半径1の円(周と内部を含む)。

解の配置 ⑴のみver.

Auro 自動ジャッジ 難易度:
33日前

0

問題文

$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式

$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$

が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.

$S(1)$ を求めよ.

解答形式

・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、3+√3+π/2

ガウス記号

Auro 採点者ジャッジ 難易度:
2月前

0

問題文

座標平面上の原点と点 $(2,2)$ を結ぶ線分(端点を含む)を $L$ とする。また,実数 $t$ に対して $t$ 以下の最大の整数を $[t]$ で表す。

次の (*) が成り立つような実数の組 $(a,b)$ の集合を $ab$ 平面上に図示せよ。

(*) 関数 $y=[ax+b]$ のグラフと $L$ がただ一つの共有点を持つ。

解答形式

$(a,b)$に関する必要十分条件を解答しても可とします。


問題文

$O$ を原点とする座標空間において,点 $A(1,0,0)$ を通り,$\overrightarrow{\ell}=(1,1,1)$ に平行な直線を $\ell_0$,
$\overrightarrow{m}=(0,0,1)$ に平行な直線を $m_0$ とする.
また,円$$
C:\ x^2+y^2=1,\ z=0
$$上に相異なる2点 $L,M$ をとる.
 点 $A$ が点 $L$ に一致するような $z$ 軸周りの回転移動によって$\ell_0$ が移る直線を $\ell_1$ とし,点 $M$ を通り $m_0$ に平行な直線を $m_1$ とする.

さらに,2直線 $\ell_1,m_1$ に対し,$\ell_1$ 上に点 $P$,$m_1$ 上に点 $Q$ を,
線分 $PQ$ の長さが最小となるようにとる.
ただし,$\ell_1,m_1$ が交わるとき,線分 $PQ$ はその交点であるとする.

相異なる2点 $L,M$ が円 $C$ 上を動くとき,線分 $PQ$ が通過しうる範囲を $K$ とする.$K$ の体積を求めよ.

解答形式

答のみで構いません。

新着問題

極限 その2

Auro 採点者ジャッジ 難易度:
8日前

0

問題文

関数
$$
y = x \log(1 + x)\quad (x \ge 0)
$$
の逆関数を
$$
y = f(x)\quad (x \ge 0)
$$
とする.

また,関数 $g(x)$を
$$
\begin{aligned}
g(x+1) &= g(x), \\
\int_{0}^{1} g(x)\,dx &= 1
\end{aligned}
$$
を満たす連続関数とする.

正の整数 $n$ に対して,次の極限値を求めよ.
$$
\lim_{n \to \infty}
\int_{0}^{e-1} f(x)\,g(nx)\,dx
$$

解答形式

例)ひらがなで入力してください。

極限とガウス記号

Auro 自動ジャッジ 難易度:
19日前

0

問題文

正の整数 $n$ に対し,関数 $f_n(x)$ を
$$
f_n(x)=x\lfloor \dfrac{n}{x}\rfloor
$$
で定める.ただし,$x>0$ とする.
また,実数 $t$ に対し,$t$ 以下の最大の整数を $\lfloor t\rfloor$ で表す.


⑴ 方程式 $
f_n(x)=n$ が正の実数解を無限個もつことを示せ. また,$f_1(x)=1$ の正の実数解を,値が大きい順に
$$
a_1,a_2,a_3,\ldots
$$
とするとき,
$$
\lim_{m\to\infty}\sum_{k=m}^{2m} a_k
$$
を求めよ.
⑵ 座標平面における $y=f_n(x)$ のグラフのうち,$
\dfrac{1}{2}\le x\le 1
$ を満たす部分の長さの総和を $S_n$ とする.
このとき, $$ \lim_{n\to\infty}\dfrac{S_n}{n}
$$を求めよ.

解答形式

証明は入力せず、答えのみで良いです。
⑴の答えは1行目、⑵の答えは2行目に いずれも左詰めで入力してください。

入力例)
π 、√π、2e/3、log7 (自然対数)、(3+√2)π、5e√2、log10_2 (常用対数)


問題文

$O$ を原点とする座標空間において,点 $A(1,0,0)$ を通り,$\overrightarrow{\ell}=(1,1,1)$ に平行な直線を $\ell_0$,
$\overrightarrow{m}=(0,0,1)$ に平行な直線を $m_0$ とする.
また,円$$
C:\ x^2+y^2=1,\ z=0
$$上に相異なる2点 $L,M$ をとる.
 点 $A$ が点 $L$ に一致するような $z$ 軸周りの回転移動によって$\ell_0$ が移る直線を $\ell_1$ とし,点 $M$ を通り $m_0$ に平行な直線を $m_1$ とする.

さらに,2直線 $\ell_1,m_1$ に対し,$\ell_1$ 上に点 $P$,$m_1$ 上に点 $Q$ を,
線分 $PQ$ の長さが最小となるようにとる.
ただし,$\ell_1,m_1$ が交わるとき,線分 $PQ$ はその交点であるとする.

相異なる2点 $L,M$ が円 $C$ 上を動くとき,線分 $PQ$ が通過しうる範囲を $K$ とする.$K$ の体積を求めよ.

解答形式

答のみで構いません。

31日前

0

問題文

$a, b$ を実数とする。複素数 $z$ に対して

$$
f(z)=z^{2}+a z+b
$$

とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。

点 $f(1+i)$ が複素数平面上でとりうる範囲の面積を求めよ。

解答形式

複素数平面 ⑵のみver.

Auro 自動ジャッジ 難易度:
31日前

0

問題文

$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して

$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$

とおく。$\alpha, \beta$ は

$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$

を満たしながら動く。ただし,$i$ は虚数単位である。

$\lvert f(1+i)\rvert$ の最大値を求めよ。

解答形式

・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項を無理にまとめる必要はない。項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、 3√3+2√2/3+1/3

解の配置 ⑴のみver.

Auro 自動ジャッジ 難易度:
33日前

0

問題文

$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式

$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$

が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.

$S(1)$ を求めよ.

解答形式

・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、3+√3+π/2

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません