$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して
$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$
とおく。$\alpha, \beta$ は
$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$
を満たしながら動く。ただし,$i$ は虚数単位である。
(1) $f(1+i)$ がとりうる範囲を求め,複素数平面上に図示せよ。
(2) $\lvert f(1+i)\rvert$ の最大値を求めよ。
(3) $P(\alpha), Q(\beta)$ とおく。$f(1+i)$ が実数,かつ $f(1), f(i)$ がともに $-2$ 以上 $2$ 以下の実数であるとき,線分 $PQ$(端点を含む)が通りうる範囲を複素数平面上に図示せよ。
⑴、⑶については、どんな図形になるかを解答すれば可とします。
例)原点を中心とする半径1の円(周と内部を含む)。
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
$S(1)$ を求めよ.
・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、3+√3+π/2
$O$ を原点とする座標空間において,点 $A(1,0,0)$ を通り,$\overrightarrow{\ell}=(1,1,1)$ に平行な直線を $\ell_0$,
$\overrightarrow{m}=(0,0,1)$ に平行な直線を $m_0$ とする.
また,円$$
C:\ x^2+y^2=1,\ z=0
$$上に相異なる2点 $L,M$ をとる.
点 $A$ が点 $L$ に一致するような $z$ 軸周りの回転移動によって$\ell_0$ が移る直線を $\ell_1$ とし,点 $M$ を通り $m_0$ に平行な直線を $m_1$ とする.
さらに,2直線 $\ell_1,m_1$ に対し,$\ell_1$ 上に点 $P$,$m_1$ 上に点 $Q$ を,
線分 $PQ$ の長さが最小となるようにとる.
ただし,$\ell_1,m_1$ が交わるとき,線分 $PQ$ はその交点であるとする.
相異なる2点 $L,M$ が円 $C$ 上を動くとき,線分 $PQ$ が通過しうる範囲を $K$ とする.$K$ の体積を求めよ.
答のみで構いません。
$O$ を原点とする座標空間において,点 $A(1,0,0)$ を通り,$\overrightarrow{\ell}=(1,1,1)$ に平行な直線を $\ell_0$,
$\overrightarrow{m}=(0,0,1)$ に平行な直線を $m_0$ とする.
また,円$$
C:\ x^2+y^2=1,\ z=0
$$上に相異なる2点 $L,M$ をとる.
点 $A$ が点 $L$ に一致するような $z$ 軸周りの回転移動によって$\ell_0$ が移る直線を $\ell_1$ とし,点 $M$ を通り $m_0$ に平行な直線を $m_1$ とする.
さらに,2直線 $\ell_1,m_1$ に対し,$\ell_1$ 上に点 $P$,$m_1$ 上に点 $Q$ を,
線分 $PQ$ の長さが最小となるようにとる.
ただし,$\ell_1,m_1$ が交わるとき,線分 $PQ$ はその交点であるとする.
相異なる2点 $L,M$ が円 $C$ 上を動くとき,線分 $PQ$ が通過しうる範囲を $K$ とする.$K$ の体積を求めよ.
答のみで構いません。
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
点 $f(1+i)$ が複素数平面上でとりうる範囲の面積を求めよ。
$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して
$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$
とおく。$\alpha, \beta$ は
$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$
を満たしながら動く。ただし,$i$ は虚数単位である。
$\lvert f(1+i)\rvert$ の最大値を求めよ。
・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項を無理にまとめる必要はない。項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、 3√3+2√2/3+1/3
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
$S(1)$ を求めよ.
・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、3+√3+π/2
$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
(1) $D_1$ を $ab$ 平面上で求めよ.また,$S(1)$ を求めよ.
(2) $\displaystyle \pi<\lim_{k\to\infty}S(k)<2\pi$ を示せ.
(3) 連立方程式の解がさらに $x=y$ を満たすような点 $(a,b)$ の存在する領域を $E_k$ とする. $k$ が $1$ 以上のすべての実数値をとるとき,$E_k$ が通りうる範囲を $ab$ 平面上で求めよ.
特に指定しません。
$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.
(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.
(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。
特に指定しません。