複合問題

y 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月12日8:03 正解数: 0 / 解答数: 0 ギブアップ数: 0

$$
y=2x^2+3ax+\begin{eqnarray}f(x)&=&ax^2+bx+1\end{eqnarray}
$$
$$
(1) f'(x)を答えて下さい。
$$
$$
(1)f'(x)=ax+2b(2)f'(x)=ax+3b(3)f'(x)=2ax+b(4)f'(x)=3ax+b
$$
$$
(2)最小値、xの値を答えて下さい。
$$
$$
(1)\begin{cases}-\frac{21}{4}{a}^2+4b\\-\frac{1}{4}a\end{cases}
(2)\begin{cases}-\frac{23}{5}{a}^2+3b\\-\frac{2}{4}a\end{cases}
(3)\begin{cases}-\frac{24}{7}{a}^2+2b\\-\frac{3}{4}a\end{cases}
(4)\begin{cases}-\frac{25}{8}{a}^2+b\\-\frac{5}{4}a\end{cases}
$$
$$
(3)(2)の最小値をg(x)と置くとき、|b|=-a+1のb<0における
  g'(x)を答えて下さい。
$$
$$
(1)-\frac{21}{4}a+4
(2)-\frac{22}{3}a+5
(3)-\frac{24}{3}a+2
(4)-\frac{25}{4}a+1
$$
$$
(4) g'(x)>125が初めて、満たされる値を答えて下さい。
$$
$$
(1)-10(2)-20(3)-30(4)-40
$$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または