$$
2x^{11}+3x^{10}-6x^9+x^8+2x^7
+11x^6-4x^5+7x^4+6x^3+9x^2+2x-3を因数分解せよ
$$
括弧の次数【$()^2$の形】の高い順に並べてください。()の中のxの式の次数が高いものは後半に並べてください。xの式の次数が同じ、かつ括弧の次数が同じもの同士では、1次の項の係数が大きい順(x,2xだったら2xが含まれる式の方を先に書く)にしてください。
$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$
$(x,y)$を$x^2+y^2=1,x\geqq0,y\geqq0$を満たすようにとる。
$z=(x,y)\cdot(\frac1{\sqrt2},\frac1{\sqrt2})$としたとき、以下の値を求めよ。
$$\int_0^1zdx$$
数列${a_n}$を以下のように定義する。
$$
\begin{eqnarray}
a_1&=&\int_0^1dx\\
a_{n+1}&=&\int_0^{a_n+1}x^{a_n}dx
\end{eqnarray}
$$
このとき、$\log_{10}(a_5)$の値を求めよ。
次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表
数列 {${a_n}$} を以下のように定義する。
$$ a_{n+3} = a_{n+2}+ a_{n+1} - a_n,\quad a_1 = \alpha,\ a_2 = \beta, a_3 = \gamma $$
ただし、$\alpha,\ \beta,\ \gamma\ $は実数である。
この問題について感想をくれると嬉しいです。例えば、以下の観点でコメント・批評があると嬉しいです。
$f(x)$を$x$の小数部分とする。
以下の値を求めよ。
$$\int^{25}_0f(\sqrt{x})dx$$
$$\int^\sqrt2_{-\sqrt2}\sin x\cos x\{\tan x+\tan{(\frac{\pi}{2}-x)}\}dx$$