KOTAKE杯(I)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月5日10:00 正解数: 34 / 解答数: 40 (正答率: 85%) ギブアップ不可
この問題はコンテスト「KOTAKE杯」の問題です。

問題文

凸四角形ABCDは内接円と外接円を持ち,AB=5, DC=3, AB//DCであった.
ACの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯(J)

MrKOTAKE 自動ジャッジ 難易度:
3月前

35

問題文

△ABCの内心をI,∠A内の傍心をJとすると以下が成立した.
BI=7, CI=15, IJ=25
このときBCの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(K)

MrKOTAKE 自動ジャッジ 難易度:
3月前

46

問題文

AB=AC=90の△ABCがあり線分BCの中点をMとすると
△ABCの垂心Hは線分AMを4:1に内分した.
このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(F)

MrKOTAKE 自動ジャッジ 難易度:
3月前

46

問題文

四面体ABCDは以下を満たす.
AB=AC=AD=13, BC=6, CD=8, BD=10
このとき四面体ABCDの体積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(H)

MrKOTAKE 自動ジャッジ 難易度:
3月前

41

問題文

中心をOとする円上に点A,Bがあり,線分AB上に点PをとるとAB=7, AP=2, OP=3であった.
このときAOの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(G)

MrKOTAKE 自動ジャッジ 難易度:
3月前

39

問題文

円に内接する四角形ABCDがあり,対角線の交点をPとするとAB=AD=24, AP=16であった.
このときCPの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(M)

MrKOTAKE 自動ジャッジ 難易度:
3月前

56

問題文

正三角形ABCとAP=2, BP=CP=3を満たす点Pがある.
ABの長さとしてあり得る値の総和の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(C)

MrKOTAKE 自動ジャッジ 難易度:
3月前

49

問題文

AB=33, BC=41, CA=26の△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(D)

MrKOTAKE 自動ジャッジ 難易度:
3月前

64

問題文

△ABCの内心をI,外心をOとする.
∠AIB=145°のとき∠AOBの角度を度数法で解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(E)

MrKOTAKE 自動ジャッジ 難易度:
3月前

40

問題文

△ABCがあり,△ABCの外接円における点Aの接線と直線BCは直交し,
AB=15, AC=20であった. このとき△ABCの面積を解答しなさい.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください

KOTAKE杯(B)

MrKOTAKE 自動ジャッジ 難易度:
3月前

51

問題文

AB=60, BC=70, CA=80の△ABCがあり,内心をIとしたとき
AIの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(P)

MrKOTAKE 自動ジャッジ 難易度:
3月前

46

問題文

AB=36, AC=24の△ABCがあり線分ABを1:2に内分する点D, 線分ACを3:1に
内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(A)

MrKOTAKE 自動ジャッジ 難易度:
3月前

58

問題文

△ABCの外心をOとすると以下が成立した.
AO=25, BC=48
このとき△ABCの面積としてあり得る最大値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.