KOTAKE杯006(C)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年7月9日21:00 正解数: 23 / 解答数: 26 (正答率: 88.5%) ギブアップ不可
この問題はコンテスト「KOTAKE杯006」の問題です。

問題文

鋭角三角形 $ABC$ があり,辺 $BC$ の中点を $M$ とし,線分 $AC$ 上に点 $D$ を,$\angle CBD=\angle CAM$ を満たすようにとると,
$$AD=1,\quad BD=6\sqrt{2},\quad DM=4\sqrt{2}$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯006(D)

MrKOTAKE 自動ジャッジ 難易度:
28日前

24

問題文

$AB=AC$ を満たす鋭角三角形 $ABC$ があり,その外接円上に点 $D(\neq B)$ を,$AC\perp BD$ を満たすようにとると,
$$CD=3,\quad AD=7$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯006(B)

MrKOTAKE 自動ジャッジ 難易度:
28日前

38

問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とします.直線 $AO,BC$ の交点を $D$,直線 $BO,AC$ の交点を $E$ とすると,
$$BD=6,\quad CD=3,\quad CE:EA=3:4$$
が成立しました.このとき,線分 $AC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯006(A)

MrKOTAKE 自動ジャッジ 難易度:
28日前

32

問題文

正三角形 $ABC$ があり,その内部に点 $D$ をとると,
$$AD=33,\quad BD=4,\quad \angle ADB=120^\circ$$
が成立しました.線分 $CD$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯006(E)

MrKOTAKE 自動ジャッジ 難易度:
28日前

29

問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(B)

MrKOTAKE 自動ジャッジ 難易度:
5日前

35

問題文

一辺の長さが $10$ である正方形 $ABCD$ があり,辺 $AB,BC,CD$ 上にそれぞれ点 $P,Q,R$ を三角形 $PQR$ が $PQ=QR$ の直角三角形になるようにとると,五角形 $APQRD$ の周の長さは $36$ であった.このとき五角形 $APQRD$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(C)

MrKOTAKE 自動ジャッジ 難易度:
5日前

35

問題文

外接円 $\Omega$ を持つ鋭角三角形 $ABC$ があり,垂心を $H$ とします.直線 $AH$ と $\Omega$ の交点のうち $A$ でないものを $P$ とすれば,
$$BP=HP=15,\quad AH=9$$
が成立したので線分 $AC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(A)

MrKOTAKE 自動ジャッジ 難易度:
5日前

39

問題文

円に内接する四角形 $ABCD$ があり,対角線の交点を $E$ とすると,
$$BE=CD,\quad AB=16,\quad BD=35,\quad CE=25$$
が成立しました.このとき線分 $AC$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(H)

MrKOTAKE 自動ジャッジ 難易度:
5日前

31

問題文

$AB=15,AC=20$ の鋭角三角形 $ABC$ があり,辺 $AC$ 上に $AB=AD$ となる点 $D$ をとります.線分 $BD$ の中点を $M$ とすると三角形 $ADM$ の外接円は直線 $CM$ に点 $M$ で接したので線分 $BC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(D)

MrKOTAKE 自動ジャッジ 難易度:
5日前

33

問題文

三角形 $ABC$ において内接円と辺 $BC,CA,AB$ の接点をそれぞれ $D,E,F$ とします.直線 $AD$ と三角形 $ABC$ の外接円の交点のうち $A$ でないものを $G$ とすると,
$$DG=BF,\quad AD=9,\quad AF=4$$
が成立したので線分 $DE$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(G)

MrKOTAKE 自動ジャッジ 難易度:
5日前

33

問題文

三角形 $ABC$ があり重心を $G$ とし,辺 $AB,AC$ の中点をそれぞれ $M,N$ とします.辺 $BC$ 上に点 $P$ をとると $4$ 点$BMGP$ ,$4$ 点 $CNGP$ はそれぞれ共円であり,
$$BP=3,\quad CP=5$$
が成立したので線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(E)

MrKOTAKE 自動ジャッジ 難易度:
5日前

38

問題文

$AB<AC$ なる三角形があり,辺 $BC$ の中点を $M$ とし直線 $AM$ と三角形 $ABC$ の外接円との交点のうち $A$ でないものを $D$ とすれば,
$$AB=BD,\quad AM=3,\quad CD=2$$
が成立したので線分 $BC$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

PDC005 (B)

pomodor_ap 自動ジャッジ 難易度:
2月前

30

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.