長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\ $\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
1辺4の正三角形の内部に点$P$をとる. 点$P$の各辺からの距離をそれぞれ$a, b, c$と置いたとき, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11\sqrt{3}}{6}, \frac{1}{a}\times\frac{1}{b}\times\frac{1}{c}=\frac{\sqrt{3}}{2}$が成り立ったから$a^2+b^2+c^2$ の値を求めよ.ただし,答えは互いに素な自然数$a, b$を用いて$\frac{a}{b}$と表されるので,$a+b$の値を答えよ.
$p, q$を素数とする.自然数$N=p^6-q^6$と表され、相違なる素因数をただ3つもつとき,$N$の値を求めよ.
$H$高校には一郎,二郎,三郎,...,$n$郎の$n$人の生徒が在籍している.この$n$人が英語と数学の試験を受けたとき,英語の分散が2,数学の分散が8,英語と数学の相関係数が0.5であった. $1 \leq k \leq n$を満たす自然数$k$について,$\vec{a}$の第$k$成分は$k$郎の英語の平均値との偏差,$\vec{b}$の第$k$成分は$k$郎の数学の平均値との偏差となるように$\vec{a}, \vec{b}$を定義する. このとき,$\vec{a}$と$\vec{b}$の内積$\vec{a}\cdot\vec{b}$を求めよ.
$a$を$b$で割った余りを$f(a, b)$とする. このとき,$\sum\limits _{n=1} ^{10000} f(n!+1, n+1)$の値を求めよ.
10進数における$10!$を$n$進数に変換したときの末尾につく0の数を $f(n)$ とする.このとき,$\sum\limits_{n=2}^\infty f(n)$を求めよ.
$xy$平面における最高次係数が1である4次関数$f(x)$に対して,$y=x^2$が2点(10,$f(10)$),(16,$f(16)$)で接しているとき,$f(x)$を求めよ.ただし,$f(x)$は整数$a, b, c, d$を用いて$x^4+ax^3+bx^2+cx+d$と表されるため,$\mid a\mid+\mid b\mid+\mid c\mid+\mid d\mid$を答えよ.
12色で,正八面体の各頂点を全ての頂点が異なる色になるように塗るとき,色の塗り方は何通りあるか求めよ.ただし,回転して一致するものは同じものと数える.
鋭角三角形 $ABC$ において,辺 $BC, CA, AB$ 上(端点除く)に点 $P, Q, R$ をとると,四角形 $AQPR$ は円 $\omega$ に内接し,点 $P$ で辺 $BC$ に接しました.点 $A$ における円 $\omega$ の接線と,直線 $BC$ の交点を $S$ とします.また,$AS$ と$QR$ の交点を $T$ ,$AP$ と $QR$ の交点を $U$ ,$AC$ の中点を $M$ ,円 $\omega$ の中心を $O$ とすると,以下が成り立ちました.
このとき,$AB$ の長さは,互いに素な正整数 $a, b$ と,平方因子をもたない正整数 $c$ を用いて,$\dfrac{a\sqrt{c}}{b}$ と表されるので,$a+b+c$ の値を解答してください.
答えは正整数になるので,半角数字で解答してください.
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.
非負整数で解答してください.
$N, E, K, O$ には,$1$ 以上 $9$ 以下の相異なる正整数が入ります. $$ N\times{E}\times{N}\times{E}\times{K}\times{O}=K\times{O}\times{N}\times{E}\times{K}\times{O} $$を満たすとき,$N+E+K+O$ としてあり得る値の最大値と最小値の積を求めてください.
答えは正整数になるので,半角数字で解答してください。
$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました. $$ MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20 $$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.