実数全体で定義された実関数 $f$ は二度微分可能であり, $f^{\prime\prime}$ が連続である. そしてすべての実数 $x$ に対して $f^{\prime}(x) > 0, f^{\prime\prime}(x) < 0$ である.
このとき, 任意の正の実数 $t$ に対して次の式が成立することを証明しなさい.
$$\left|\int_0^t\cos{f(x)}dx\right| \le \frac{2}{f^\prime (t)}$$
証明過程をできるだけ詳しく作成してください.