数学の問題一覧

カテゴリ
以上
以下

問題

$n$を $0$ でない実数とします。以下の定積分を求めてください。

解答形式

答えだけでもいいですが、方針があると嬉しいです。

[B] Symmetric Concavity

masorata 自動ジャッジ 難易度:
5月前

2

問題文

関数 $f:(0,\infty)\to(0,\infty)$ は $C^2$級で、任意の $x>0$ に対して

$$
f(1)=1,\ \ f\left(\frac{1}{x}\right)=\frac{f(x)}{x},\ \ \frac{d^2}{dx^2} f(x)\leq 0,\ \ \frac{d^2}{dx^2} \left( \frac{1}{f\left(\frac{1}{x}\right)} \right) \leq 0
$$

をすべて満たすとする。このような $f$ に対し

$$
I [f]=\int_{\frac{1}{2}}^{2}f(x)dx
$$

を考える。

(1)$I[f]$ の最大値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエ}}$ である。
(2)$I[f]$ の最小値は $\fbox{オ}-\fbox{カ}\log\fbox{キ}$ である。ただし $\log$ は自然対数である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキ」をすべて半角で2行目に入力せよ。
ただし、対数の中身が最小となるように答えよ。

[A] Triple Matrix

masorata 自動ジャッジ 難易度:
5月前

14

問題文

正の整数 $a,b,c$ が

$$
\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^a
\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 1 \\ 0 & 0 & 1\end{pmatrix}^b
\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}^c
=\begin{pmatrix} 1 & 20 & 2024\\ 0 & 1 & 24 \\ 0 & 0 & 1\end{pmatrix}
$$

を満たすとき、$a+b+c$ の値を求めよ。

解答形式

半角数字で1行目に入力せよ。


問題文

$N$ を正の整数、$c>0$ を定数とする。実数の組 $(t_1,t_2,\ldots,t_N)$ に対して関数

$$
f_n(t_1,t_2,\ldots,t_N)=t_n(1-t_n)\left(c(1+t_n)-\sum_{i=1}^{N}t_i\right) \ \ \ (n=1,2,\ldots ,N)
$$

を考える。また、$N\times N$ 行列 $J(t_1,t_2,\ldots,t_N)$ を

$$
J(t_1,t_2,\ldots,t_N) =
\left(
\begin{array}{ccc}
\frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial t_1} & \cdots & \frac{\partial f_N}{\partial t_N}
\end{array}\right)
$$

と定義する。

$N=1000,\ \displaystyle{c=\frac{1000}{1.23}}$ として、以下の問いに答えよ。

(1)$1000$個の実数の組 $(x_1,x_2,\ldots,x_{1000})$ であって、$x_1\leq x_2 \leq \ldots \leq x_{1000} $ かつ

$$
f_n(x_1,x_2,\ldots,x_{1000})=0\ \ \ (n=1,2,\ldots ,1000)
$$

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、$J(x_1,x_2,\ldots,x_{1000})$ の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[C] Soft Spring

masorata 自動ジャッジ 難易度:
5月前

2

問題文

$a>0$ を定数とする。$t\geq0$ で定義された実数値関数 $x(t)$ について、以下の微分方程式の初期値問題を考える:

$$
\begin{cases}
\displaystyle x''(t)=-\frac{x(t)}{(1+\lbrace x(t) \rbrace^2)^2} \ \ \ (t\geq0)\\
\displaystyle x(0)=\frac{\sqrt2}{4}, \ x'(0)=a
\end{cases}
$$

(1)$\displaystyle \lim_{t \to +\infty}x(t)=+\infty$ となる $a$ の範囲は、$\displaystyle a \geq \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ である。
(2)$\displaystyle a = \frac {\fbox{ア}\sqrt{\fbox{イ}}}{\fbox{ウ}}$ のとき、$\displaystyle x(t)=\frac{3}{4}$ となる $t$ の値は $\displaystyle t = \frac {\fbox{エ}}{\fbox{オカ}}+\frac{\fbox{キ}}{\fbox{ク}}\log2$ である。ただし $\log$ は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。

二項級数

akaddd 採点者ジャッジ 難易度:
11月前

0

(1). $(1+x)^\alpha\ (\alpha\in{\mathbb{R}})$のマクローリン展開を求めよ.
(2). $\arcsin{x}$のマクローリン展開を求めよ.

極限の問題

akaddd 自動ジャッジ 難易度:
12月前

10

以下の極限値を求めよ。

$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr)
$$

余擺々々...線

tsx 自動ジャッジ 難易度:
17月前

2

問題文

定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.

2023/02/22 訂正:

tima_C様のご指摘を受け、難易度を変更しました.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.

ネタ

yudukikun5120 自動ジャッジ 難易度:
2年前

4

$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.


問題文

$a_{1} = 3$ , $a_{n+1} = \frac{a_{n}(a_{n}+1)}{2}$

とする($n$は自然数)。

また、$2$ 以上の自然数を $p$ とし、$a_{n}$を $3^{p}$ で割った時の余りを $R_{n}^{p}$ とする。

このとき、数列 {$R_{n}^{p}$} は
「周期の長さが $2×3^{p-2}$ 」であり、
かつ「 $0$ 以上 $3^{p}$ 未満の $3$ の倍数のうち $9$ の倍数ではない数」

をすべて巡回することを示せ。

解答形式

論述形式です。途中までの投稿もOKです。$p$ の値が小さければ、試してみると成立していることが分かります。

□に当てはまる数字は何?

k34 採点者ジャッジ 難易度:
3年前

0

2=1
4=11
8=7
25=6
42=21
100=□

ヒント
数字を変換してください。

[F] Slow and Steady

halphy 自動ジャッジ 難易度:
3年前

3

問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$

である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を

$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$

とおく。

$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$

であり,

$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。