2次元座標平面上の有限な閉じた凸領域 $\mathcal{D}$ に対し, $\mathcal{D}$ の境界 $\beta=\partial\mathcal{D}$ が次を満たすとします.
(1) $\beta$ は滑らかな単純閉曲線です.
(2) $\beta$ 上の任意の点 $O$ に対して $O$ を中心とする半径が $1$ である円は $\beta$ との交点を正確に $2$ つ持ちます.
(3) $\beta$ 上の任意の点 $O$ に対し, $O$ で $\beta$ と接する直線は $\beta$ と $O$ 以外の交点を持ちません.
両端が $P, Q$ で, 中点が $M$ の長さ $1$ の棒を考えましょう. この棒の両端点が常に $\beta$ の上に置かれるように棒を曲線に沿って一周すると, つまり $\beta$ に沿って二点 $P, Q$ を連続的に一周すると $M$ の跡は単純閉曲線 $\gamma$ になります。
この時, 二つの曲線 $\beta,\gamma$ の間にある領域の広さが $\frac{\pi}{4}$ であることを証明しなさい.
証明過程をできるだけ詳しく作成してください.