第1回琥珀杯 大問2

Kohaku 自動ジャッジ 難易度: 数学 > 競技数学
2025年2月12日0:00 正解数: 11 / 解答数: 16 (正答率: 68.8%) ギブアップ数: 0
この問題はコンテスト「第1回琥珀杯」の問題です。

問題文

正三角形$ABC$の内部の1点$P$は、$AP=5,BP=4,CP=3$を満たす。この正三角形の面積を求めよ。

解答形式

互いに素な正整数$a,b$と平方因子をもたない正整数$c$、及び正整数$d$を用いて$\frac{b\sqrt{c}}{a}+d$と表せるので、$a+b+c+d$を解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

第1回琥珀杯 大問3

Kohaku 自動ジャッジ 難易度:
8月前

23

問題文

$AB=DC=2,AD=3,AC=\sqrt{17}$を満たす等脚台形$ABCD$の面積を求めよ。

解答形式

互いに素な正整数$a,b$と平方因子を持たない正整数$c$を用いて$\frac{b\sqrt{c}}{a}$と表せるので、$abc$を解答してください。

第1回琥珀杯 大問5

Kohaku 自動ジャッジ 難易度:
8月前

12

問題文

円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

第1回琥珀杯 大問4

Kohaku 採点者ジャッジ 難易度:
8月前

7

$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。

解答形式

a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。
(例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合
→1 2 3 4 5

第1回琥珀杯 大問1

Kohaku 自動ジャッジ 難易度:
8月前

17

問題文

正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

D

Nyarutann 自動ジャッジ 難易度:
8月前

20

問題文

アルファベット $9$ 文字 $A, I, K, M, N, O, R, S, U$ には相異なる $1$ 以上 $9$ 以下の正整数が入ります.

を満たすとき,$A, I, K, M, N, O, R, S, U$ は一意に定まるので,これを順に解答してください.

解答形式

カンマやスペースなどを入れず,半角数字のみで解答してください.
例えば,$A=1, I=2, \ldots, U=9$ のとき,$123456789$ のように解答してください.

A

Nyarutann 自動ジャッジ 難易度:
8月前

31

問題文

$N, E, K, O$ には,$1$ 以上 $9$ 以下の相異なる正整数が入ります.
$$
N\times{E}\times{N}\times{E}\times{K}\times{O}=K\times{O}\times{N}\times{E}\times{K}\times{O}
$$を満たすとき,$N+E+K+O$ としてあり得る値の最大値と最小値のを求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください。

内接円, 外接円, 傍接円

tori9 自動ジャッジ 難易度:
6月前

14

問題文

三角形 $ABC$ の内心と外心をそれぞれ $I, O$ としたところ,$AI=AO$ が成り立ちました.三角形 $ABC$ の内接円,外接円の半径がそれぞれ $142, 857$ であるとき,$\angle{A}$ 内の傍接円の半径を求めてください.

解答形式

例)答えは互いに素な正整数 $a, b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

Floor and Ceiling

Lim_Rim_ 自動ジャッジ 難易度:
6月前

29

問題文

方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.

備考

高校生時代(2016年)の作問のリメイクです.

C

Nyarutann 自動ジャッジ 難易度:
8月前

18

問題文

いま,「飛翔の武神・真田幸村」「覚醒のネコムート」「大狂乱のネコライオン」(以降真田ムートライオンと表記)がおり,$3$ キャラが同じ距離をそれぞれ一定速度で移動します.最初,$3$ キャラは真田ライオンムートの順に速く,真田ライオンの所要時間の差と,ライオンムートの所要時間の差の比は $6:5$ でした.しかし,ムートの本能が解放され,移動速度が $10$ 上がると,真田ムートライオンの順に速くなり,真田ムートの所要時間の差と,ムートライオンの所要時間の差は $11:10$ になりました.
 このとき,本能解放後のムートの速度としてあり得る最小の正整数値を求めてください.
 ただし,他のキャラの速度も正整数値であるとします.

解答形式

答えは正整数値となるので,半角数字で解答してください.

OMC没問2

Kta 自動ジャッジ 難易度:
7月前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

immovable

yuuki_sakimori 自動ジャッジ 難易度:
5年前

10

問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

17月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33