KOTAKE杯003(D)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年1月4日10:00 正解数: 35 / 解答数: 39 (正答率: 89.7%) ギブアップ不可
この問題はコンテスト「KOTAKE杯003」の問題です。

全 39 件

回答日時 問題 解答者 結果
2025年1月12日12:17 KOTAKE杯003(D) sha256
正解
2025年1月11日11:57 KOTAKE杯003(D) Nagumo
正解
2025年1月11日11:57 KOTAKE杯003(D) Nagumo
正解
2025年1月11日11:57 KOTAKE杯003(D) Nagumo
正解
2025年1月11日9:52 KOTAKE杯003(D) Nagumo
不正解
2025年1月8日18:09 KOTAKE杯003(D) shoko_math
正解
2025年1月8日8:15 KOTAKE杯003(D) kinonon
正解
2025年1月7日3:25 KOTAKE杯003(D) Qrey01
正解
2025年1月7日1:23 KOTAKE杯003(D) choco+
正解
2025年1月6日12:37 KOTAKE杯003(D) acuri
正解
2025年1月6日1:24 KOTAKE杯003(D) ir0z
正解
2025年1月6日0:12 KOTAKE杯003(D) sum
正解
2025年1月5日21:00 KOTAKE杯003(D) katsuo_temple
正解
2025年1月5日16:38 KOTAKE杯003(D) natsuneko
正解
2025年1月5日10:51 KOTAKE杯003(D) kurao
正解
2025年1月5日4:09 KOTAKE杯003(D) marimolinnaei
正解
2025年1月5日0:20 KOTAKE杯003(D) Nyarutann
正解
2025年1月4日23:48 KOTAKE杯003(D) Tehom
正解
2025年1月4日22:03 KOTAKE杯003(D) hanahoku
正解
2025年1月4日20:19 KOTAKE杯003(D) bbl_cookie
正解
2025年1月4日19:40 KOTAKE杯003(D) uran
正解
2025年1月4日17:51 KOTAKE杯003(D) Kta
正解
2025年1月4日16:30 KOTAKE杯003(D) raka
正解
2025年1月4日15:05 KOTAKE杯003(D) GaLLium
正解
2025年1月4日15:04 KOTAKE杯003(D) GaLLium
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯003(E)

MrKOTAKE 自動ジャッジ 難易度:
14日前

39

問題文

鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(G)

MrKOTAKE 自動ジャッジ 難易度:
14日前

37

問題文

三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(B)

MrKOTAKE 自動ジャッジ 難易度:
14日前

35

問題文

$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(C)

MrKOTAKE 自動ジャッジ 難易度:
14日前

38

問題文

正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(I)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

$AD<BC$の等脚台形$ABCD$があり線分$AB$上に$∠ADP=∠BCP$となる点$P$をとると
$AP=6,BP=9,AD=16$であったので
等脚台形$ABCD$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(H)

MrKOTAKE 自動ジャッジ 難易度:
14日前

29

問題文

鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(A)

MrKOTAKE 自動ジャッジ 難易度:
14日前

64

問題文

鋭角三角形$ABC$があり$∠A$内の傍心を$P$とすると$∠APB=23°$であったので,
$∠BAC$の大きさを度数法で表したときにあり得る最小の整数値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(F)

MrKOTAKE 自動ジャッジ 難易度:
14日前

33

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(L)

MrKOTAKE 自動ジャッジ 難易度:
14日前

32

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$,垂心を$H$とすると
$AM=20,BC=16,MH=4$であったので$AH$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(J)

MrKOTAKE 自動ジャッジ 難易度:
14日前

20

問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。

KOTAKE杯003(K)

MrKOTAKE 自動ジャッジ 難易度:
14日前

19

問題文

$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(J)

MrKOTAKE 自動ジャッジ 難易度:
5月前

36

問題文

三角形$ABC$の内心を$I$,$∠A$内の傍心を$J$とすると以下が成立した.
$BI=7,CI=15,IJ=25$
このとき$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.