Death Game

simasima 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月1日20:30 正解数: 24 / 解答数: 44 (正答率: 54.5%) ギブアップ不可
この問題はコンテスト「USOMO004」の問題です。

問題文

左から右に一列に並んだ $n$ 色のボールがあります。AliceとBobはボールを使ったデスゲームで遊ぶようです。
Aliceが先手でそれ以降は交互に手番を行います。
各手番のプレイヤーは隣り合う $2$ つのボールを選択し、その位置を入れ替えます。この時、その $2$ つのボールの組が(自分相手関係なく)過去に選ばれていた場合、全てのボールが大爆発し、手番のプレイヤーは死にます。死ななかった方が勝ちです。

例: $n=3$ の場合
最初のボールの並びを (赤,青,黄) とします。
Aliceの手番
赤と青を入れ替えました。盤面:(青,赤,黄)
Bobの手番
赤と黄を入れ替えました。盤面:(青,黄,赤)
Aliceの手番
黄と青を入れ替えました。盤面:(黄,青,赤)
Bobの手番
赤と青を入れ替えようとしますが、赤と青の組は最初のターンで選ばれています。全てのボールが大爆発し、Bobは死にました。
Aliceの勝利です。

Bobが死んでしまったのでゲームが出来なくなってしまいました...

あなたが代わりに参加して下さい。
あなたが負けた場合は全ての問題が大爆発し、得点が-5000兆点になります。
今回は $n=333$ です。あなたが先手か後手を選んでください。

解答形式

あなたが選ぶ手番を先手か後手の漢字二文字で解答してください。
この問題に不正解の判定を受けた場合、あなたのUSOMO004での得点は $-5000000000000000$ 点になります。

提出制限

この問題の提出制限は $1$ 回です。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Go to Heaven

simasima 自動ジャッジ 難易度:
4月前

39

問題文

$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?

解答形式

非負整数で解答してください。

提出制限

この問題の提出制限は $1$ 回です。

40000000001

simasima 自動ジャッジ 難易度:
4月前

44

問題文

$40000000001$ は二つの異なる素数の積で表されます。その二つの素数のうち小さい方を解答してください。

解答形式

非負整数で解答して下さい。

提出制限

この問題の提出制限は10回です。

連分数

simasima 自動ジャッジ 難易度:
4月前

47

問題文

正の有理数に対してスコアを次のように定義する。
有理数に対して正則連分数の数列を $[a_0;a_1,a_2,...,a_n]$とした時、$\sum^{n}_{i=0}a_i$
連分数を知らない人は下のWikipediaを見ても良いです
https://ja.wikipedia.org/wiki/%E9%80%A3%E5%88%86%E6%95%B0

例えば、$9$ のスコアは $9$ で、$\frac{7}{4}$ のスコアは $5$ で、$\frac{1}{7}$ のスコアは $7$ です。

スコアが $10$ であるような正の有理数の中で $100$ 番目に小さいものを解答してください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて、$\frac{b}{a}$ と表せるので $a+b$ を解答してください。

提出制限

この問題の提出制限は $5$ 回です。

問題

noppi_kun 自動ジャッジ 難易度:
4月前

15

問題文

鋭角三三三角形 $ABCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$ において,その外心を $O$,垂心を $H$,内接円を $\omega$ としたとき,$O,H$ はともに $\omega$ 上にあり,$\omega$ の半径は $1$ であった.
この条件下で線分 $OH$ の長さとしてありうる値の総積を $xxxxxxxxxx$ とする.$xxxxxxxxxx$ の最小多項式を $P$ として,$|P()|$ の値を解答せよ.ただし,$xxxxxxxxxx$ が最小多項式をもつことが保証される.

解答形式

半角数字を用いて解答せよ.解答すべき値が $$ でないことは保証される.

2^{2^{10}} mod 2027

kzy33550336 自動ジャッジ 難易度:
4月前

58

問題文

$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.

My_Problem

Lim_Rim_ 自動ジャッジ 難易度:
4月前

43

問題文

$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.

PDC005 (C)

pomodor_ap 自動ジャッジ 難易度:
3月前

52

$(i,j) (0\leq i,j\leq 2)$ の $9$ 個の格子点がある.いま,この中から $n$ 点をうちどの $3$ 点も直角三角形を成さないように選ぶことができる最大の正の整数 $n$ を $N$ とし,$n=N$ のときの条件を満たす選び方を $M$ 通りとするとき,$M^N$ を解答せよ.

PDC005 (E)

pomodor_ap 自動ジャッジ 難易度:
3月前

41

正の整数について定義され,$1$ 以上 $100$ 以下の整数値を取る関数 $f$ であり,任意の正の整数 $x,y$ について
$$f(x)+f(y)=f(x^2y)+f(4x)$$
を満たすものすべてについて,$(f(1), f(2),…, f(100))$ としてありうる組が $N$ 個存在するとき,$N$ が $2$ で割り切れる回数を求めよ.

PDC005 (B)

pomodor_ap 自動ジャッジ 難易度:
3月前

30

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

体育会系数学部

simasima 自動ジャッジ 難易度:
16月前

47

問題文

正整数 $n$ について $d(n)$ で $n$ の正の約数の個数を表すとき、
$$\sum^{100000}_{k=1}d(k)$$
の値を求めよ。

以下は体育会系数学部のある部員がこの問題に挑戦した記録である。


とりあえず1から順に約数の個数を数えていくぞ!
$d(1)=1$
$d(2)=2$
$d(3)=2$
$d(4)=3$
...
$d(100)=9$
これを $100000$ までやるのは大変だな...
もしかして主客転倒すれば
$$\sum^{100000}_{k=1} \left [\frac{100000}{k}\right ]$$
を計算すればいいのでは?やってみよう!
$\sum^{1}_{k=1} [\frac{100000}{k} ] =100000$

$\sum^{2}_{k=1} [\frac{100000}{k}] =150000$

$\sum^{3}_{k=1} [\frac{100000}{k}] =183333$

...

$\sum^{100}_{k=1} [\frac{100000}{k} ] =518692$

この調子でどんどん計算していくぞ!

...

$\sum^{1000}_{k=1} [\frac{100000}{k} ] =748058$

流石に疲れてきたな...

...

$\sum^{2024}_{k=1} [\frac{100000}{k} ] = 818025$

意識が朦朧としてきた...


その後部員は救急車で病院に搬送された。
部員の途中計算は間違っていないようだ。部員の意思を継いでこの問題の答えを出してほしい。

解答形式

非負整数で解答してください。

1100

shakayami 自動ジャッジ 難易度:
4月前

28

問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.

PDC005 (D)

pomodor_ap 自動ジャッジ 難易度:
3月前

72

$2$ 番目に小さい正の約数と $3$ 番目に小さい正の約数の和が $12$ であるような,正の約数が $3$ つ以上ある正の整数のうち,$100$ 以下のものの総和を求めよ.