円に外接する凸四角形 $\mathrm{ABCD}$ について,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ と円との接点をそれぞれ $\mathrm E,\mathrm F,\mathrm G,\mathrm H$ とし,$\mathrm{AE},\mathrm{BF},\mathrm{CG},\mathrm{DH}$ の長さをそれぞれ $a,b,c,d$ とする.このとき,四角形 $\mathrm{ABCD}$ の面積 $S$ を $a,b,c,d$ により表せ.
ただし,解答に際しては $a=3,\ b=4,\ c=5,\ d=7$ の場合の $S^2$ の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.