問題1

sulippa 自動ジャッジ 難易度: 数学
2025年7月14日21:45 正解数: 17 / 解答数: 21 (正答率: 81.0%) ギブアップ数: 1
この問題はコンテスト「mod特訓」の問題です。

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題

kitotch 自動ジャッジ 難易度:
3月前

25

問題文

$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。

解答形式

半角数字で入力してください。

第3問

sulippa 自動ジャッジ 難易度:
4月前

11

問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし

1と4

udonoisi 自動ジャッジ 難易度:
2月前

18

問題文

非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください.
ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.

解答形式

例)整数を答えてください.

✕✕

sulippa 自動ジャッジ 難易度:
4月前

12

✕✕

関数方程式 解説修正版

Sry 自動ジャッジ 難易度:
29日前

8

$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

問題2

sulippa 自動ジャッジ 難易度:
2月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

問題3

sulippa 自動ジャッジ 難易度:
2月前

7

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
5月前

54

問題文

次の方程式を満たす、素数 $p$ と正の整数 $n, m$ の組 $(p, n, m)$ を全て求めよ。
$$ p^n + 144 = m^2 $$

解答形式

条件を満たす組中の数字の総和を半角で入力してください

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
6月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

sEigEn sign

piroshiki 自動ジャッジ 難易度:
41日前

13

問題文

$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。
$m$の値を求めよ。

解答形式

$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。
$m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。

変遷(ごめんなさい)

udonoisi 自動ジャッジ 難易度:
36日前

13

問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

整数問題

judgeman 自動ジャッジ 難易度:
4月前

24

問題文

$n$を$2025$以下の正整数とする。
ある$n$について、$(n^{2}+n+1)(n^{3}+n^{2}-2n)$がもつ素因数$2$の個数を$d(n)$で表す。
$d(n)=1$となるような$n$の個数を求めよ。

解答形式

半角数字で入力してください。