PDC008.5 (F)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月4日22:00 正解数: 8 / 解答数: 17 (正答率: 47.1%) ギブアップ数: 1
この問題はコンテスト「PDC008.5」の問題です。

問題文

任意の正の整数 $m, n(m\leq n)$ について $\displaystyle |\sum_{i=m}^{n} a_i| \leq 2$
が成り立つような整数列 $a_i (i\geq 1)$ について,$(a_1, a_2, …, a_{100})$ としてありうる組は $N$ 個存在する.$N$ を素数 $97$ で割った余りを求めよ.

訂正: 「非負整数列」と誤りがありましたが,正しくは整数列です.申し訳ありません.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC008.5 (E)

pomodor_ap 自動ジャッジ 難易度:
2月前

30

問題文

素数の組 $(p, q, r, s, t)$ について
$$\dfrac{p^4 + q^4 + r^4 + s^4 + t^4 + 340}{8}$$ としてありうる最小の素数値を求めよ.

PDC008.5 (C)

pomodor_ap 自動ジャッジ 難易度:
2月前

35

問題

$a,b$ を実数とする.$f(x)=x^4+ax^3+bx^2+ax+1$ は $f(1/2)\cdot f(1/3)=4$ を満たしている.$f(2)+f(3)$ としてありうる最小の正の整数値を求めよ.

PDC008.5 (D)

pomodor_ap 自動ジャッジ 難易度:
2月前

27

問題文

円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.

PDC008.5 (H)

pomodor_ap 自動ジャッジ 難易度:
2月前

22

問題文

正の整数 $n$ について,$f(n)$ を $_n\mathrm{C}_k$ が奇数であるような,$0\leq k\leq n$ を満たす整数 $k$ の個数とする.$$f(a)^2+4f(b)=f(c)^3+4$$ かつ $a+b+c=2047$ を満たす正の整数の組 $(a,b,c)$ はいくつ存在するか?

PDC008.5 (A)

pomodor_ap 自動ジャッジ 難易度:
2月前

65

問題文

$1$ の位が $0,1,2,…,9$ であるような正の約数をすべて持つ最小の正の整数を求めよ.

PDC008.5 (B)

pomodor_ap 自動ジャッジ 難易度:
2月前

53

問題文

$\{1,2,…,9999\}$ の部分集合 $S$ であり,任意の $S$ の要素 $a,b(a\neq b)$ について $a+b$ を行ったときに繰り上がりが起きない(どの桁も $10$ を超えない)ようなものについて,その要素数の最大値を求めよ.

PDC008.5 (G)

pomodor_ap 自動ジャッジ 難易度:
2月前

9

問題文

鋭角三角形 $ABC$ について線分 $AC$ 上に点 $P$ を取り,線分 $PC$ の垂直二等分線と線分
$BC$ が交わったのでその点を $D$ とする.線分 $AB$ 上の点 $E$ が $ED\parallel AC$ を満たしている.三角形 $PED$ の外接円と線分 $BC$ が $D$ でない点 $F$ で交わっており,$$FA=FC=7, BD=4, PD=5$$ が成り立った.このとき,線分 $AC$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC009 (E)

pomodor_ap 自動ジャッジ 難易度:
7日前

26

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

PDC009 (C)

pomodor_ap 自動ジャッジ 難易度:
7日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
21月前

10

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
12月前

9

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

PDC009(A)

pomodor_ap 自動ジャッジ 難易度:
7日前

43

問題文

一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.