PDC009 (F)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2025年9月30日22:00 正解数: 8 / 解答数: 15 (正答率: 53.3%) ギブアップ数: 2
この問題はコンテスト「PDC009」の問題です。

問題文

三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC009 (D)

pomodor_ap 自動ジャッジ 難易度:
1日前

19

問題文

$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC009 (E)

pomodor_ap 自動ジャッジ 難易度:
1日前

25

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

PDC009 (C)

pomodor_ap 自動ジャッジ 難易度:
1日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

KOTAKE杯007(J)

MrKOTAKE 自動ジャッジ 難易度:
2月前

24

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば,
$$BP=CD=5,\quad PE=3$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

問題3

tomorunn 自動ジャッジ 難易度:
18日前

10

問題文

$2025$ 以下の正整数 $n$ であって,
$$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$
が $6$ の倍数となるものの総和を求めよ.

解答形式

半角数字で入力してください。

KOTAKE杯007(P)

MrKOTAKE 自動ジャッジ 難易度:
2月前

19

問題文

$\angle A$ が鈍角の二等辺三角形 $ABC$ があり,外接円を $\Omega$ とします.$\Omega$ の点 $C$ を含まない弧 $AB$ 上に点 $P$ をとり,直線 $BP$ と点 $C$ における $\Omega$ の接線の交点を $Q$ とし,直線 $AP$ と線分 $CQ$ の交点を $R$ とすると以下が成立しました.
$$BC=40,\quad BP=14,\quad QR=9$$
このとき線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯007(O)

MrKOTAKE 自動ジャッジ 難易度:
2月前

25

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.半直線 $EF$ と直線 $BC$ の交点を $P$ とすれば,
$$AC=BP,\quad BD=60,\quad CD=92$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(N)

MrKOTAKE 自動ジャッジ 難易度:
2月前

20

問題文

鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,

$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(L)

MrKOTAKE 自動ジャッジ 難易度:
2月前

23

問題文

鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.$AD,EF$ の交点を $P$ とすると,以下が成立しました.
$$DE=37,\quad EF=40,\quad AP:PD=5:6$$
このとき線分 $DF$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(R)

MrKOTAKE 自動ジャッジ 難易度:
2月前

27

問題文

三角形 $ABC$ があり,内心を $I$ とします.直線 $BI,AC$ の交点を $D$ とし,端点を除く線分 $BC$ 上に $4$ 点 $ABDE$ が共円となるように点 $E$ をとると,直線 $AI,DE$ は三角形 $ABC$ の外接円上で交わり,以下が成立しました.
$$AD=2,\quad BE=3$$
このとき線分 $AC$ の長さは.正の整数 $a,b,c$ を用いて$\frac{b+\sqrt{c}}{a} $ と表されるので $a+b+c$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(Q)

MrKOTAKE 自動ジャッジ 難易度:
2月前

25

問題文

鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば,
$$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(M)

MrKOTAKE 自動ジャッジ 難易度:
2月前

20

問題文

三角形 $ABC$ があり内心を $I$ とし,辺 $BC$ の中点を $M$ とすると,
$$AB:AC=3:5,\quad AI=IM=20$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.