正の整数について定義され(正とは限らない)整数値を取る関数 $f$ であって,任意の正の整数 $m,n$ について $$f(mn)=f(m)^2+f(m)f(n)-f(1)$$ を満たすものについて,$(f(1), f(2), …, f(100))$ としてありうる組はいくつ存在するか?
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
各位の和が奇数であるような,$11$ で割り切れる最小の正の整数を求めよ.
$1\leq a_1 < a_2 < a_3 < a_4 < a_5\leq 100$ をみたす整数の組 $(a_1,a_2,a_3,a_4,a_5)$ すべてについて,次の値の総和を求めよ. $$\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+\frac{a_5}{5}$$
三角形 $ABC$ について,外接円と $\angle A$ の二等分線が再び交わる点を $M$,線分 $AM$ と $BC$ の交点を $D$,$\angle AMC$ の二等分線と線分 $BC,AC$ の交点をそれぞれ $E,F$ とすると,$DE=9, AF=16, AB=20$ が成立した.線分 $BC$ の長さを求めよ.
以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.
$$(mn - 1)^2 + (m + n)^2 = 650$$
正整数で答えてください.
正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.
$$AP = 10 , BP = 14 , CP = 16$$
このとき,正三角形 $ABC$ の面積を求めて下さい.
求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.
$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?
鋭角三角形 $ABC$ について,垂心を $H$,直線 $AH$ と $BC$,$BH$ と $AC$ の交点をそれぞれ $D,E$ とし,線分 $BC$ の中点を $M$ とする.四角形 $BDHP$ が長方形となるように点 $P$ を取ると $\angle APM=90^{\circ}, AE=3, EC=8$ が成立するとき,線分 $AD$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
すべての項が素数であるような数列 $a_1, a_2, …, a_N (a_1 \le a_2 \le … \le a_N)$ であり,$a_1^2+a_2^2+…+a_N^2=999$ を満たすもののうち,$N$ が最小のものすべてについて,$a_1+a_2+…+a_N$ の総和を解答せよ.
nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.
全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.
$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.
$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$
求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.
$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.
一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.