$O$ を原点とする座標空間において,$2$ 点 $P, Q$ が次の条件をすべて満たすとき,線分 $PQ$ が通過しうる範囲を $K$ とする。
$K$ の $x^{2}+y^{2}\le 4$ を満たす部分の体積を求めよ。
$(a)$ 点 $P$ は平面 $y=0$ 上にある。
$(b)$ $OP = PQ = 2$
$(c)$ 線分 $PQ$ は平面 $x=0$ に含まれるか,または平行である。
$(d)$ 線分 $PQ$ は $z\ge 0$ を満たす領域に完全に含まれる。
特に指定しません。