$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.
(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.
(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。
特に指定しません。