円 $\Gamma$ に内接する不等辺三角形 $ABC$ について,その内心を $I$ とし,線分 $BC$ の中点を $M$ とします.線分 $AB,AC$ に接し $\Gamma$ に点 $T$ で内接する円が一意に存在するのでこの中心を $S$ とし,直線 $AI$ が $\Gamma$ と再び交わる点を $V$ とします.また,三角形 $STV$ の外心を $P$ とすると,線分 $IP$ 上の点 $H$ が以下を満たしました.
$$ \angle TAV = \angle HMI, \quad \angle THP = \angle TSV $$さらに, $SV = \sqrt{39}, \ MV = \dfrac{198}{53}$ が成り立つとき,三角形 $ABC$ の面積は互いに素な正の整数 $a,c$ および平方因子を持たない正の整数 $b$ を用いて $\dfrac{a \sqrt{b}}{c} $ と表せるので, $a+b+c$ の値を解答してください.
正の整数を半角で解答.