複素数平面 ⑵のみver.

Auro 自動ジャッジ 難易度: 数学 > 高校数学
2025年12月19日13:56 正解数: 0 / 解答数: 0 ギブアップ不可

問題文

$\alpha, \beta$ を複素数とし,$0$ でない複素数 $z$ に対して

$$
f(z)=\alpha z^{2}+z+\dfrac{\beta}{z}
$$

とおく。$\alpha, \beta$ は

$$
\lvert f(1)\rvert \le 2 \quad \text{かつ} \quad \lvert f(i)\rvert \le 2
$$

を満たしながら動く。ただし,$i$ は虚数単位である。

$\lvert f(1+i)\rvert$ の最大値を求めよ。

解答形式

・左詰め、半角数字・記号
・根号は√ 、円周率はπを用いる
・項を無理にまとめる必要はない。項が2つ以上あるとき、値が大きい順に入力(通分しなくてよい)
例 √6+3π/10、 3√3+2√2/3+1/3


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または