各桁が奇数のみで表される自然数の逆数からなる級数
$\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{31}+\cdots$
の和を $S$ とすると、
$\sum\limits_{n=1}^{10} \frac{1}{n} < S < 2 \sum\limits_{n=1}^{5} \frac{1}{2n-1}$
となることを示せ。