関数
$$
y = x \log(1 + x)\quad (x \ge 0)
$$
の逆関数を
$$
y = f(x)\quad (x \ge 0)
$$
とする.
また,関数 $g(x)$を
$$
\begin{aligned}
g(x+1) &= g(x), \\
\int_{0}^{1} g(x)\,dx &= 1
\end{aligned}
$$
を満たす連続関数とする.
正の整数 $n$ に対して,次の極限値を求めよ.
$$
\lim_{n \to \infty}
\int_{0}^{e-1} f(x)\,g(nx)\,dx
$$
例)ひらがなで入力してください。