公開日時: 2025年3月4日16:27 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
中心を $O_1,O_2$ とする $2$ 円 $\omega_1,\omega_2$ が $2$ 点 $A,B$ で交わっています.半直線 $O_1A$ と $\omega_2$ が点 $A$ 以外の点で交わったのでその交点を $C$ とし,半直線 $O_2A$ と $\omega_1$ が点 $A$ 以外の点で交わったのでその交点を $D$ とすると,以下が成立しました.$$O_1A=3,O_2A=AB=2$$このとき,$CD$ の長さは最大公約数が $1$ である正整数 $a,c,e$ と平方因子を持たない正整数
$b,d$ を用いて $\displaystyle\frac{a\sqrt{b}+c\sqrt{d}}{e}$ と表せるので,$abcde$ を解答してください.
例)半角数字で入力してください。
公開日時: 2025年3月4日16:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
四角形 $ABCD$ があり,半直線 $BA,CD$ が点 $E$ ,半直線 $AD,BC$ が点 $F$ ,半直線 $CA,FE$ が点 $G$ でそれぞれ交わっています.線分 $BE$ を $BE:AB$ に外分する点を $H$ としたとき、以下が成立しました.$$GB\parallel EC,BE\cdot BF=90,AB\cdot BC\cdot CF\cdot AE=320$$このとき,四角形 $BGHF$ の面積は三角形 $ABC$ の面積の $\displaystyle\frac{a}{b}$ 倍( $a,b$ は互いに素な正整数)となるので,$a+b$ を解答してください.
例)半角数字で入力してください。
公開日時: 2025年3月3日19:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
重心を$G$とする三角形$ABC$において,その外接円を$Γ$とし,$A$を通って$BC$に垂直な直線と$Γ$が再び交わる点を$D$とする.また$B,C$から対辺に下ろした垂線の足をそれぞれ$E,F$とし,三角形$DEF$の外接円と$Γ$の交点のうち,$D$でないほうを$P$とする.$AB,AC$の中点をそれぞれ$M,N$としたとき,$3$直線$MN,EF,AG$は$1$点で交わり,$$AB=3 AP=4$$が成立した.このとき$BC^2$は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$の値を解答して下さい.
半角で解答して下さい.
公開日時: 2025年3月2日1:06 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
縦に $2$ マス,横に $20$ マス並んだ $2 \times 20$ のマス目に対して,以下の $2$ つの条件をともに満たすように各マスに $0$ 以上 $25$ 以下の整数を書き込む方法は $S$ 通りあるので,$S$ を割り切る素数すべての積を求めてください.ただし,$a_{i,j}$ で上から $i$ 行目,左から $j$ 列目に書き込まれた数字を表します.
・$1 \le j \le 20$ に対して,$a_{2,j} \le a_{1,j}$ .
・$1 \le i \le 2,1 \le j \le 19$ に対して,$a_{i,j+1} \le a_{i,j}$ .
半角数字で解答してください.
公開日時: 2025年3月1日12:24 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。
公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ において,辺 $BC, CA, AB$ 上(端点除く)に点 $P, Q, R$ をとると,四角形 $AQPR$ は円 $\omega$ に内接し,点 $P$ で辺 $BC$ に接しました.点 $A$ における円 $\omega$ の接線と,直線 $BC$ の交点を $S$ とします.また,$AS$ と$QR$ の交点を $T$ ,$AP$ と $QR$ の交点を $U$ ,$AC$ の中点を $M$ ,円 $\omega$ の中心を $O$ とすると,以下が成り立ちました.
このとき,$AB$ の長さは,互いに素な正整数 $a, b$ と,平方因子をもたない正整数 $c$ を用いて,$\dfrac{a\sqrt{c}}{b}$ と表されるので,$a+b+c$ の値を解答してください.
答えは正整数になるので,半角数字で解答してください.
公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました.
$$
MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20
$$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.
答えは正整数になるので,半角数字で解答してください.
公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
アルファベット $9$ 文字 $A, I, K, M, N, O, R, S, U$ には相異なる $1$ 以上 $9$ 以下の正整数が入ります.
を満たすとき,$A, I, K, M, N, O, R, S, U$ は一意に定まるので,これを順に解答してください.
カンマやスペースなどを入れず,半角数字のみで解答してください.
例えば,$A=1, I=2, \ldots, U=9$ のとき,$123456789$ のように解答してください.
公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
いま,「飛翔の武神・真田幸村」「覚醒のネコムート」「大狂乱のネコライオン」(以降真田・ムート・ライオンと表記)がおり,$3$ キャラが同じ距離をそれぞれ一定速度で移動します.最初,$3$ キャラは真田,ライオン,ムートの順に速く,真田とライオンの所要時間の差と,ライオンとムートの所要時間の差の比は $6:5$ でした.しかし,ムートの本能が解放され,移動速度が $10$ 上がると,真田,ムート,ライオンの順に速くなり,真田とムートの所要時間の差と,ムートとライオンの所要時間の差は $11:10$ になりました.
このとき,本能解放後のムートの速度としてあり得る最小の正整数値を求めてください.
ただし,他のキャラの速度も正整数値であるとします.
答えは正整数値となるので,半角数字で解答してください.
公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
にゃんこ大戦争には,$10$ 体の基本キャラが存在します.そのキャラを図鑑と同じ順番で,$1, 2, \ldots , 10$ と番号を付けます.今、$1$ 番のキャラ(ネコ)が $512$ 体一列に並んでおり,以下の操作を $511$ 回行います.
最終的に,番号が $10$ であるキャラ(ネコ超人)が残るような、操作の行い方(順番)は $N$ 通りあります.$N$ が $2$ で割り切れる最大の回数を求めてください.
答えは正の整数値になるので、それを半角数字で解答してください。