全問題一覧

カテゴリ
以上
以下

Kta

公開日時: 2025年3月4日16:27 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

中心を $O_1,O_2$ とする $2$ 円 $\omega_1,\omega_2$ が $2$ 点 $A,B$ で交わっています.半直線 $O_1A$ と $\omega_2$ が点 $A$ 以外の点で交わったのでその交点を $C$ とし,半直線 $O_2A$ と $\omega_1$ が点 $A$ 以外の点で交わったのでその交点を $D$ とすると,以下が成立しました.$$O_1A=3,O_2A=AB=2$$このとき,$CD$ の長さは最大公約数が $1$ である正整数 $a,c,e$ と平方因子を持たない正整数
$b,d$ を用いて $\displaystyle\frac{a\sqrt{b}+c\sqrt{d}}{e}$ と表せるので,$abcde$ を解答してください.

解答形式

例)半角数字で入力してください。

Kta

公開日時: 2025年3月4日16:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

四角形 $ABCD$ があり,半直線 $BA,CD$ が点 $E$ ,半直線 $AD,BC$ が点 $F$ ,半直線 $CA,FE$ が点 $G$ でそれぞれ交わっています.線分 $BE$ を $BE:AB$ に外分する点を $H$ としたとき、以下が成立しました.$$GB\parallel EC,BE\cdot BF=90,AB\cdot BC\cdot CF\cdot AE=320$$このとき,四角形 $BGHF$ の面積は三角形 $ABC$ の面積の $\displaystyle\frac{a}{b}$ 倍( $a,b$ は互いに素な正整数)となるので,$a+b$ を解答してください.

解答形式

例)半角数字で入力してください。

katsuo_temple

公開日時: 2025年3月3日19:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

重心を$G$とする三角形$ABC$において,その外接円を$Γ$とし,$A$を通って$BC$に垂直な直線と$Γ$が再び交わる点を$D$とする.また$B,C$から対辺に下ろした垂線の足をそれぞれ$E,F$とし,三角形$DEF$の外接円と$Γ$の交点のうち,$D$でないほうを$P$とする.$AB,AC$の中点をそれぞれ$M,N$としたとき,$3$直線$MN,EF,AG$は$1$点で交わり,$$AB=3 AP=4$$が成立した.このとき$BC^2$は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$の値を解答して下さい.

解答形式

半角で解答して下さい.

Tehom

公開日時: 2025年3月2日1:06 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

組み合わせ

問題文

縦に $2$ マス,横に $20$ マス並んだ $2 \times 20$ のマス目に対して,以下の $2$ つの条件をともに満たすように各マスに $0$ 以上 $25$ 以下の整数を書き込む方法は $S$ 通りあるので,$S$ を割り切る素数すべての積を求めてください.ただし,$a_{i,j}$ で上から $i$ 行目,左から $j$ 列目に書き込まれた数字を表します.
・$1 \le j \le 20$ に対して,$a_{2,j} \le a_{1,j}$ .
・$1 \le i \le 2,1 \le j \le 19$ に対して,$a_{i,j+1} \le a_{i,j}$ .

解答形式

半角数字で解答してください.

iwashi

公開日時: 2025年3月1日12:24 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

Upasha

公開日時: 2025年2月25日20:22 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

nps

公開日時: 2025年2月23日23:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

Nyarutann

公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ において,辺 $BC, CA, AB$ 上(端点除く)に点 $P, Q, R$ をとると,四角形 $AQPR$ は円 $\omega$ に内接し,点 $P$ で辺 $BC$ に接しました.点 $A$ における円 $\omega$ の接線と,直線 $BC$ の交点を $S$ とします.また,$AS$ と$QR$ の交点を $T$ ,$AP$ と $QR$ の交点を $U$ ,$AC$ の中点を $M$ ,円 $\omega$ の中心を $O$ とすると,以下が成り立ちました.

  • $\angle{CAT}=90$ °
  • $CO=20$
  • $SU$ は $\angle{ASP}$ の角の二等分線
  • $MO=2$

このとき,$AB$ の長さは,互いに素な正整数 $a, b$ と,平方因子をもたない正整数 $c$ を用いて,$\dfrac{a\sqrt{c}}{b}$ と表されるので,$a+b+c$ の値を解答してください.

解答形式

答えは正整数になるので,半角数字で解答してください.

Nyarutann

公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました.
$$
MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20
$$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください.

Nyarutann

公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

アルファベット $9$ 文字 $A, I, K, M, N, O, R, S, U$ には相異なる $1$ 以上 $9$ 以下の正整数が入ります.

を満たすとき,$A, I, K, M, N, O, R, S, U$ は一意に定まるので,これを順に解答してください.

解答形式

カンマやスペースなどを入れず,半角数字のみで解答してください.
例えば,$A=1, I=2, \ldots, U=9$ のとき,$123456789$ のように解答してください.

Nyarutann

公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

いま,「飛翔の武神・真田幸村」「覚醒のネコムート」「大狂乱のネコライオン」(以降真田ムートライオンと表記)がおり,$3$ キャラが同じ距離をそれぞれ一定速度で移動します.最初,$3$ キャラは真田ライオンムートの順に速く,真田ライオンの所要時間の差と,ライオンムートの所要時間の差の比は $6:5$ でした.しかし,ムートの本能が解放され,移動速度が $10$ 上がると,真田ムートライオンの順に速くなり,真田ムートの所要時間の差と,ムートライオンの所要時間の差は $11:10$ になりました.
 このとき,本能解放後のムートの速度としてあり得る最小の正整数値を求めてください.
 ただし,他のキャラの速度も正整数値であるとします.

解答形式

答えは正整数値となるので,半角数字で解答してください.

Nyarutann

公開日時: 2025年2月22日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

にゃんこ大戦争には,$10$ 体の基本キャラが存在します.そのキャラを図鑑と同じ順番で,$1, 2, \ldots , 10$ と番号を付けます.今、$1$ 番のキャラ(ネコ)が $512$ 体一列に並んでおり,以下の操作を $511$ 回行います.

  • 番号がともに $n$ である隣り合う $2$ 体を選び,その $2$ 体を取り除いて番号が $n+1$ であるキャラを同じところに $1$ 体入れる.

最終的に,番号が $10$ であるキャラ(ネコ超人)が残るような、操作の行い方(順番)は $N$ 通りあります.$N$ が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えは正の整数値になるので、それを半角数字で解答してください。