全問題一覧

カテゴリ
以上
以下
4年前

28

問題文

$f(x)=-16x^3+24x^2-9x+1$ とおく。以下の問いに答えよ。

⑴ 以下の式が $\theta$ の恒等式になるように空欄を埋めよ。なお、同じ文字の空欄には同じ数が入る。

$$
f\left( \frac{\fbox{ア}+\sin\theta}{\fbox{イ}}\right)=\frac{\fbox{ア}+\sin(\fbox{ウ}\theta)}{\fbox{イ}}
$$

⑵ 次の定積分を求めよ。
$$
\int_ {0.5} ^{0.75} f(f(f(x))) dx = \frac{\fbox{エオカ}}{\fbox{キクケコ}}
$$

解答形式

ア〜コには、0から9までの数字が入る。
⑴の答えとして、文字列「アイウ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「エオカキクケコ」をすべて半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で答えよ。

4年前

41

問題文

$7^{7^7}$ を $777$ で割ったあまりを求めよ。

(注:$7^{7^7}$ は「 $7$ の「 $7$ の $7$ 乗」乗」を表すものとする。)

解答形式

$0$ 以上 $776$ 以下の整数を、半角数字で1行目に入力せよ。

[A] 東大レベル!

masorata 自動ジャッジ 難易度:
4年前

80

問題文

次の条件(a), (b)をともに満たす自然数($1$ 以上の整数)$\rm{A}$ の最小値を求めよ。

(a) $\rm{A}$ は連続する $3$ つの自然数の和である。

(b) $\rm{A}$ を $10$ 進法で表したとき、$1$ が連続して $9$ 回以上現れるところがある。

解答形式

半角数字のみで1行目に入力せよ。

[F] 歪んだバランス

masorata 自動ジャッジ 難易度:
4年前

11

問題文

相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は

$$
\displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキクケ」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

Q261

Soft-Head 自動ジャッジ 難易度:
4年前

458

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

Q260

Soft-Head 自動ジャッジ 難易度:
4年前

174

Q259

Soft-Head 自動ジャッジ 難易度:
4年前

271

Q258

Soft-Head 自動ジャッジ 難易度:
4年前

437

求値問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。

xsinxを含む定積分

zyogamaya 自動ジャッジ 難易度:
4年前

4

問題文

$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。

解答形式

答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。

極値

zyogamaya 自動ジャッジ 難易度:
4年前

4

問題文

関数$f(x)=(xe^{x-1}+x^2+2x+2)e^{-x}$の極大値を求めよ。

解答形式

半角数字またはTeXで入力してください。分数の場合は「a/b」などと入力可能です。
例:
答えが$\displaystyle\frac{e^2}{7}$の場合、「e^2/7」と入力する。

答えが$\displaystyle\frac{4e^3+26}{e^4}$の場合、「(4e^3+26)/e^4」と入力する。