公開日時: 2025年7月29日22:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ において,$\angle{A}, \angle{B}, \angle{C}$ の角の二等分線と辺 $BC, CA, AB$ との交点を $D, E, F$ ,直線 $CF$ と $DE$ の交点を $X$ ,三角形 $ABC$ の外接円と直線 $AD, AX$ の交点を $M, N$ とすると,以下が成り立ちました.
$$
MN=NC, BD=4, DC=6
$$このとき,三角形 $ABC$ の面積を求めてください.ただし,答えは 正整数 $a, b, c$ ( $a$ と$b$ は互いに素,$c$ は平方因子を持たない)を用いて $\dfrac{b\sqrt{c}}{a}$ と表されるので $a+b+c$ の値を解答してください.
半角数字で解答してください.
公開日時: 2025年7月29日22:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
半角数字で解答してください.
公開日時: 2025年7月27日13:40 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ
$$\sum_{i=1}^{n} x_i^n = y^n$$
$x_i$がすべて互いに素でnが6以上のときこの式を満たす自然数は高々有限個しか存在しない。
この命題をABC予想を真として、真か偽を証明しなさい。
公開日時: 2025年7月27日11:19 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$D_n$ を $1$ から $n$ までの整数の順列 $(a_1, a_2, \cdots ,a_n)$ のうち
$$a_k \neq k \quad (k=1, 2, \cdots ,n)$$ を満たすものの個数とする. 例えば, $D_2=1, D_3=2, D_4=9$ である.
このとき,任意の素数 $p$ に対して$$D_{p-1} \equiv \sum_{k=0}^{p-1}{k! } \pmod{p}$$ となることを示せ.
方針だけでも採点します
公開日時: 2025年7月22日9:17 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: ジャッジなし
ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ
数字を10個
公開日時: 2025年7月21日21:00 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a^{17}+b^{17}=c^{17}$を満たす自然数の組み合わせ$(a,b,c)$が存在しないことを示せ。
多少厳密じゃなくても正解になります。
公開日時: 2025年7月21日20:40 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: ジャッジなし
リーマンゼータ関数の自明でないゼロ点は閉じた形で表せられるか。
証明またはリーマンゼータ関数の自明でないゼロ点の閉じた形を解答しなさい。
公開日時: 2025年7月17日17:51 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$S$を集合として$M$をその任意の部分集合とする。
(i). $\mathfrak{O}_M:=\{X|M\subset {X},X\subset {S}\}\cup{}\{\emptyset\}$は$S$の位相となることを示せ。
(ii).{$\mathfrak{O}_M\}_{M\in\mathcal{P}(S)}$以上の濃度をもつ$S$の位相の集合は存在するか。するなら具体的に一つ述べよ。
ただし$S$の濃度$|S|≧2$とする。
公開日時: 2025年7月16日9:01 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形 $ABC$ があり,$A,B$ から対辺におろした垂線の足をそれぞれ $D,E$ とし,線分 $DE$ 上に点 $P$ をとると,以下が成立しました.
$$AB=3,\quad AC=5,\quad \angle PAB=\angle PBC,\quad \angle PAC =\angle PCB $$
このとき線分 $AP$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください