△ABCの重心Gに関してAと対称な点をDとすると4点ABDCは共円であり,
AB=6, BD=4であった. このときADの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
正三角形ABCとAP=2, BP=CP=3を満たす点Pがある.
ABの長さとしてあり得る値の総和の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。
$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$
この時、$|a_{1998}a_{1106}|$を求めよ。
答えをそのまま入力しなさい。
△ABCがあり,また点Cを通る点BでABに接する円Oがある.円O上でありかつ
△ABCの内部にBD=CDとなる点DをとりACと円Oの交点のうちCでないものをEとおくと
AB=15 BC=10 DE=16であった.このときACの長さの2乗は互いに素な正整数a,bによってa/bと表されるのでa+bの値を解答してください.
ただし点A,C,EはACEの順に一直線上に並んでいるものとする。
答えは正の整数値となるので, その整数値を半角で入力してください.
$n$を自然数とします。$n$個の複素数からなる組$z(n)=(z_1,z_2,z_3,……z_n)$について、$z(n)$の要素からの異なる$i$個の選び方全てについてそれら(選んだ$i$個の要素)の総積を求め、それら(全ての選び方)の総和を$S(z(n),i)$とします。ある組$z(2024)$が存在して$$S(z(2024),1)=S(z(2024),2)=S(z(2024),3)=……S(z(2024),2022)=0,S(z(2024),2024)=-2$$を満たすとき、$$(z_1)^{2024}+(z_2)^{2024}+(z_3)^{2024}+……+(z_{2024})^{2024}$$の値は実数になるのでそれを計算して答えてください。
値を1行目に半角で入力してください。
$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました.
$A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください.
しかし,引き分けは考えないものとします.
非負整数を半角数字で答えてください.
$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.
但しボールは互いに区別できるものとする.
答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.
追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません。