全問題一覧

カテゴリ
以上
以下

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください.
ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.

$$
\begin{array}{c:ccccccccc}
n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\
\hline
10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296
\end{array}\\\\
\begin{array}{ccccccccc}
10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\
\hline
936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584
\end{array}\\\\
\begin{array}{ccccccccc}
19 & 20 & 21 & 22 & 23 & 24 &25\\
\hline
1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000
\end{array}
$$

解答形式

半角数字で解答してください.
たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.

nanohana

公開日時: 2024年7月13日22:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

多変数関数 最大

問題文

実数a,b,c,d,e,fが次の不等式を満たしている。
$$
a^2+b^2+c^2≦1
$$$$
b^2+c^2+d^2≦1
$$$$
c^2+d^2+e^2≦1
$$$$
d^2+e^2+f^2≦1
$$このとき$$a+b+c+d+e+f$$の最大値を求めよ。

解答形式

a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。

Mr.brave

公開日時: 2024年7月13日11:32 / ジャンル: その他 / カテゴリ: 言語学クイズ / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

I finished () my homework.

解答形式

()に入る語句を英語で答えよ。

Lamenta

公開日時: 2024年7月13日9:23 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

poino

公開日時: 2024年7月12日23:50 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ の垂心を $H$ とし、$AH$ と $BC$ の交点を $D$、$BC$ の中点を $M$ とすると、$B,D,M,C$ がこの順に並びました。$AH$ を直径とする円と $AM$ の交点のうち $A$ でない方を $X$ とすると、$∠CXM=∠BAM$ でした。$BD=23,DM=42$ のとき、三角形 $ABC$ の面積を解答してください。

解答形式

半角数字で入力してください。

soka

公開日時: 2024年7月11日22:17 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$a=2+\sqrt3$とする.
このとき
$$a^{2025}+a^{2023}+...+a^3+a$$の$1$の位を求めよ.

解答形式

半角数字で解答してください

Lamenta

公開日時: 2024年7月11日18:14 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.