全問題一覧

カテゴリ
以上
以下

Kinmokusei

公開日時: 2022年10月2日2:51 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。

hkd585

公開日時: 2022年10月1日21:20 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

解答形式

解答のみを,半角数字で答えてください.

tb_lb

公開日時: 2022年9月27日0:05 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #073】
 今週の図形問題です。中心の位置も半径も中心角も異なる扇形に登場してもらいました。計算に一手間必要なので、簡単なメモ用紙程度の紙は必要になるかと思います。どうぞじっくりとお楽しみください。

お詫びと訂正

(2022年9月27日0時05分)
 昨夜投稿した「2つの扇形」ですが、僕が誤った正答を設定してしまい、本来なら正解であるにもかかわらず不正解扱いされてしまう事態が起きてしまいました。お詫びいたします。申し訳ございませんでした。
 なお、誤っていた元の問題は削除し(正確には下書きに戻し)、新たに問題を投稿し直しました。誤った問題のせいで下がってしまった正解率については元に戻してもらえるよう問い合わせます。今しばらくお待ちください。
 なお、今回の僕の誤りについては複数の指摘がありました。改めてこの場で御礼申し上げます。
(2022年9月29日22時28分追記)
 下がってしまった正答率について元に戻していただいた旨の連絡がありました。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

lyala

公開日時: 2022年9月20日9:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$を$5$以上の自然数とする。
$a_{1}+a_{2}+a_{3}<a_{4}+a_{5}\leq n$ を満たす自然数の組$(a_{1},a_{2},a_{3},a_{4},a_{5})$は何通りあるか。

解答形式

答えは$\frac{\fbox{あ}n^5-\fbox{い}n^4+\fbox{う}n^3-\fbox{え}n^2+\fbox{お}n}{\fbox{か}}$と表せます。
この分数式が既約な形になるように、それぞれの文字に当てはまる整数を、半角数字で、五十音順に改行して答えてください。
(例)$\fbox{あ}=2,\fbox{い}=10,\fbox{う}=4$と回答する場合
2
10
4

tb_lb

公開日時: 2022年9月18日22:29 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #072】
 今週の問題は久しぶりに求角問題です。地道に角度を求めていけば手掛かりが見つかるかもしれません。自信のある方は、できるだけ少ない計算回数で、かつ、暗算で挑戦してみてください!

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2022年9月11日22:27 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #071】
 今週の図形問題です。正三角形と扇形を組み合わせたシンプルな構図にまとめてみました。おそらくいろいろな解法が存在するでしょうが、暗算可能な解法も仕込んでいます。お好きな解法をお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2022年9月11日0:18 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。

nemuri_neco

公開日時: 2022年9月7日22:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 数A

問題文

$\frac{7p+q}{7q+p}$が整数となるような異なる素数$(p,q)$の組み合わせを全て求めよ。

解答形式

$p$と$q$を横につなげて解答してください。解答が2つ以上ある場合は$p$の小さい順に改行して記入してください。$p$が等しい解答が2つ以上あった場合、$q$の小さい順に改行して記入してください。

解答例)$(p,q)=(2,11),(7,17),(7,29)$のとき、以下のように解答します。
211
717
729

lyala

公開日時: 2022年9月5日22:30 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$1,2...nの数字を次の条件を満たすように一列に並べる方法の数をa_nとする。$
$条件:k(k=1,2,...n-1)について右隣の数がk+1でない。$
$このとき、a_7を求めよ。$

解答形式

半角数字で回答してください。
4/19追記この問題は、改善点があるので、工事予定です。

tb_lb

公開日時: 2022年9月4日23:20 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

yorunojunin_i

公開日時: 2022年9月2日1:54 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ

漢字 四字熟語

下に書かれた四字熟語のうち、他の四字熟語とは異なる、ある共通点を持った2つの四字熟語がある。その2つの四字熟語とは?
なお、その2つの四字熟語は同じ漢字が含まれていないことに注意。

・千載一遇 ・質疑応答
・小春日和 ・以心伝心
・一攫千金 ・柳暗花明
・春夏秋冬 ・百鬼夜行


解答の形式
2つの四字熟語をあいうえお順で続けて入力する。
例)
一攫千金千載一遇

u_ki

公開日時: 2022年8月31日15:24 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ

dot

解読してみてください。