公開日時: 2025年4月12日3:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$ を非負整数とする.番号 $0,1,2,\cdots,2^n-1$ が $1$ つずつ振られた $2^n$ 枚の札が箱に入っている.「箱から札を無作為に $1$ 枚取り出し,札の番号を記録してから箱の中に戻す」という操作を考える.
以下の問いに答えよ.ただし,自然数 $N$ に対し,$\displaystyle\frac N{2^m}$ が自然数となるような最大の非負整数 $m$ を $f(N)$ で表すとする.
$(1)$ 操作を $1$ 回おこない,記録した番号を $b$ とする.このとき,$f({}_{2^n}\mathrm C_b)$ の期待値を求めよ.
$(2)$ 操作を $2$ 回おこない,記録した番号を $a,b$ とする.このとき,$f({}_{2^n+a}\mathrm C_b)$の期待値を求めよ.
ただし,解答に際しては $n=10$ のときの値を答えよ.
答えの値は, $\displaystyle \xi+\frac{\eta}{\zeta}$ のように,整数部分 $\xi$ と小数部分 $\displaystyle\frac{\eta}{\zeta}$ に分けて求める.ここで,$\eta$ は非負整数,$\zeta$ は自然数で,$\eta$ と $\zeta$ は互いに素とする.
$(1)$ の $\xi,\eta,\zeta$ の値をそれぞれ $1,2,3$ 行目に,$(2)$ の $\xi,\eta,\zeta$ の値をそれぞれ $4,5,6$ 行目に記して答えとせよ.
公開日時: 2025年4月11日19:23 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
サイコロを $3$ 回振って出た目を $a, b, c$ とする.このとき,$xy$ 平面上の $3$ 直線
$ax+2by+3c=0,\ 3bx+cy+2a=0,\ 2cx+3ay+b=0$
によって囲まれる三角形が存在する確率を求めよ.
答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を答えよ.
公開日時: 2025年4月11日17:42 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
△ABCについて、辺BC,CA,ABの長さをそれぞれa,b,cとおく。∠C=120°であり、a,b,cが全て素数であるような組(a,b,c)を全て求めよ。
(1,2,3)などのように、半角かっこの中に数字と半角コンマを入れ解答する。かっこ、半角コンマの前後にスペースを含まないこと。複数個ある場合は辞書順に並べて、(まずaの値が小さい順に並べ、aの値が同じな時はbの値が小さい順に並べ、aとbの値が同じな時はcの値が小さい順に並べること。)1行に1つ解答し、改行すること。
公開日時: 2025年4月11日15:04 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$ を自然数として $\displaystyle\frac1n$ と表される数全体の集合を $A$ とする.また,$A$ の要素のうち,$7$ 進法で小数展開したとき,小数点以下が基本周期 $3$ の数字の列で表される循環小数となるもの全体の集合を $B$ とする.
このとき,$B$ の要素の総和を求めよ.答えは互いに素な自然数 $a, b$ により $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$,$2$ 行目に $b$ を答えよ.
公開日時: 2025年4月11日12:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.
公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.
公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.
公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。
$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。
答えは非負整数なので,その数値を回答してください.OMCと同じです.
公開日時: 2025年4月7日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.
高校生時代(2016年)の作問のリメイクです.