お問い合わせに関して (2023年3月26日13:07)
お問い合わせにおいて返答が必要な場合は、お送りの際に連絡先をご記入ください。最近送った記憶のある方は連絡先併記の上、再度お送りください。

全問題一覧

カテゴリ
以上
以下

ooohirarinooo

公開日時: 2022年4月12日15:36 / ジャンル: その他 / カテゴリ: 漢字 / 難易度: / ジャッジ形式: 自動ジャッジ


yusa

公開日時: 2022年4月10日21:03 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


do re(oh said sag form)

19・3・1・12・5

上の文がなぜ下の数字になるのでしょうか??

Kinmokusei

公開日時: 2022年4月10日1:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

tb_lb

公開日時: 2022年4月3日22:32 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #052】
 今週の図形問題もシンプルにしてみました。シンプルなだけに補助線の威力が存分に味わえるかと思います。頭の中で完全に処理し切れる解法を想定していますが、これだけ単純な構図だと解法も多様でしょう。自由な手法でお楽しみいただければ本望です。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

Kinmokusei

公開日時: 2022年4月3日1:03 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

tb_lb

公開日時: 2022年3月27日22:48 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #051】
 今週の図形問題です。今回は見た目はおとなしく、でも、一味異なる決まり方のする問題を用意してみました。補助線の過程も補助線後の処理も存分にお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

Kinmokusei

公開日時: 2022年3月27日1:47 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正方形2つを図のように配置しました。青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$0\leq a\lt 180$ を満たす整数 $a$ を半角数字で解答してください。

satie

公開日時: 2022年3月26日10:19 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ


2つの正三角形と2つの正方形

2つの同じ大きさの正三角形と2つの正方形があります。
色が付いている部分と大きな正方形の比を答えましょう。

解答形式

分数で答えてください。

tb_lb

公開日時: 2022年3月20日23:23 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #050】
 今週の図形問題はおなじみの図形を積み上げる趣向でお送りします。図形の数の多さにひるむかもしれませんが、補助線をうまく引ければ暗算でも処理できるように仕込んであります。どうぞ補助線の威力を存分にお楽しみください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}^2$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

Kinmokusei

公開日時: 2022年3月20日13:47 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、水色で示した三角形の面積を求めてください。
赤で示した三角形の面積は $24$ です。

解答形式

半角数字で解答してください。

nemuri_neco

公開日時: 2022年3月19日10:08 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

関数 整数問題 数I

問題文

$f(x)=x^2-4x+6$とする。$f(f(f(f(f(p+2)))))$が素数となるような素数$p$を全て求めよ。

解答形式

ない場合は「0」、ある場合は小さい順に半角英数字で入力してください。

cos2

公開日時: 2022年3月17日22:40 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

極限 数Ⅲ 難問 漸化式 東大 京大

問題文

定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。

解答形式

記述式(答えのみも歓迎)