全問題一覧

カテゴリ
以上
以下

数列の和の評価

Tarotaro 採点者ジャッジ 難易度:
42日前

1

$$数列a_{n}を次のように定義する。$$$$a_{1}=1,a_{2}=1,$$$$a_{n+2}=\frac{a_{n+1}}{a_{n}}+\frac{a_{n}}{a_{n+1}}(n\in{\mathbb N} )$$$$また、a_{n}の和をS_{n}とおく。$$$$この時[S_{2025}]<4130を示せ。$$$$ただし[k]はk以下の最大の整数とする。$$

数列の桁和

mahiro 自動ジャッジ 難易度:
6月前

8

問題文

以下の式の ( $10$ 進法における) 桁和を求めなさい.$$4+\sum_{k=0}^{99}(500+(-1)^k×513)×10^k$$

解答形式

非負整数で回答して下さい.

6月前

11

問題

$1$ 以上の整数 $n$ について関数 $f(n)$ は以下の式により定義されます.$$f(n)=\sum_{k=1}^{2n}\prod_{m=0}^{2^9}(k-m)$$ このとき,$f(n)=0$ の成り立つ $n$ の総和は,素数 $p$ と整数 $m$ を用いて,$pm$ と示せるので,$p+m$ の最小値を回答してください.
 ただし,素数表:https://onlinemathcontest.com/primes は用いても構いません.

解答形式

非負整数で回答してください.


問題文

以下の値を求めてください。
$$
\begin{align}
\sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}}
\end{align}
$$

解答形式

答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、
$p+q$の値を解答してください。


制作者の声

(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)