三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形$ABC$があり$BC$の中点を$M$,垂心を$H$とすると
$AM=20,BC=16,MH=4$であったので$AH$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AD<BC$の等脚台形$ABCD$があり線分$AB$上に$∠ADP=∠BCP$となる点$P$をとると
$AP=6,BP=9,AD=16$であったので
等脚台形$ABCD$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
OMCB030-C(https://onlinemathcontest.com/contests/omcb030/tasks/4587)
のもう一つの案です.
$2$ 以上の整数 $n$ に対し,$n$ が持つ相異なる素因数の総積を $\mathrm{rad}(n)$ で表します.例えば,$\mathrm{rad}(18)=2×3$ です.次の等式を満たす $2$ 以上の整数 $m$ の総和を求めてください.
$$m=\mathrm{rad}(m)+240$$
$1$ 以上 $15$ 以下の整数の組 $(a, b, c)$ であって
$$(2a + 2b + 2c - 33)^2 = (|2a - 9| + |2b - 11| + |2c - 13|)^2$$
をみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.